Primary production in the Arctic Ocean: Future changes in physics, nutrients, and carbon

Patricia Matrai

(with a little help from my friends)

Bigelow Laboratory for Ocean Sciences

www.audunrikardsen.com

What are these (charismatic megafauna) resources based upon?

Charismatic microflora! Plant (phyto) plankton: Different diatoms (hundred micrometres in size, stained)

How can productivity be influenced by change?

1. Bottom-up effects:

Environmental change affects consumers by modulating the productivity, timing and/or size of primary producers.

2. Top-down effects:

Altered predation by consumer affects the structure and/or productivity of lower food web.

Courtesy J-E Tremblay

Bottom-up change: less ice = more light

1. Extent (September minimum)

Source: NSDIC

2. Age (thickness)

Source: NSDIC

3. Seasonal persistence of annual ice: - 2 to 13 days per decade

Primary production patterns are not a simple function of light

Mean annual incident insolation (20 – 350 W m⁻²) Kallberg et al. (2005).

Primary Production

Mean annual chlorophyll (= phytoplankton biomass) NASA

Swiss Global Change Day 2013 Bern

Courtesy J-E Tremblay

Ice melt and surface warming result in stratification that prevents vertical mixing

Low nutrient supply to surface and thus low harvestable productivity

Courtesy P Wassmann

How deep?

Seasonal distribution of euphotic zone and mixed layer depths from spring to fall in the Arctic Ocean

Swiss Global Change Day 2013 Bern

Hill, Matrai et al. 2013

Today's extreme seasonal variation disappears

Wassmann 2011, and those before him

Where is Arctic Primary Production now?

Integrated Annual Net Primary Production (PP) (1954-2007 field; 1998-2007 satellite data)

Net Community Production

NCP * f factor = NPP (or NP?) (0-200) (0-40) gC m⁻² yr⁻¹

Swiss Global Change Day 2013 Bern

Codispoti, Matrai et al. 2013

A biological model applied regionally... using satellite data

Pan-arctic decadal trend

Pabi et al. 2008 Arrigo and van Dijken 2011

Hindcasting into the 1970s

Pan-Arctic representation of the present

Mean annual water column PP [gC m⁻² y⁻¹] by 5 models and a satellite-derived estimate

Primary Production (gC/m²/yr)

Figure 1. Mean annual water column primary production (in g C m⁻² yr⁻¹) for (a) NEMO, (b) LANL, (c) UW, (d) UL, (c) OCCAM, and (f) satellite-derived estimates of *Pabi et al.* [2008].

Reality check or validation

- Our projections are only as good as our data are:
 - Enough biological data to validate?
 - Year-round; arctic-wide; under-ice and ice-edge blooms
 - Appropriate physical and biological models?
 - Current parameterizations of mixed layer depth, nutrient fields, vertical distribution of phytoplankton biomass
 - Factors with "new" or unintended effects?
 - Clouds, winds, fresh water stratification

Integrated Annual NPP

ARCSS PP & nutrients data sets 1954-2007 (www.nodc.noaa.gov) Hill, Matrai et al. 2013

Also see Ardyna et al. 2013 BGD

Subsurface chlorophyll maximum (=phytoplankton biomass): seasonal and regional vs. annual and pan-arctic scales

Where are the phytos and when?

Modeled mixed layer depth examples

Figure 4. Maximum depth of UML during the year on the basis of monthly averaged values (m; note nonlinear color scale) for (a) NEMO, (b) LANL, (c) UW, (d) UL, (e) OCCAM, and (f) WOA climatology.

Popova et al. 2012

Clouds and light

Light decrease (8-20%) (+ clouds) (1998-2009) ABOVE sea (ice) surface Light change (+3 to -3%) (1998-2009) JUST BELOW sea (ice?) surface

PP increase (1998-2009) estimated below sea (ice?) surface

Wind! => wind-driven turbulence and eddies => mixing, nitrate consumption

With ice vs. Without Ice

Woodgate, Rainville, Mahadevan, Wang, Matrai, in prep

Much to be done on the modeling side:

AOMIP

(http://www.whoi.edu/page.do?pid=29836)

4th Primary Production Algorithm Round Robin (contact pmatrai@bigelow.org)

Summary

- Sea ice is thinning and extent is reduced, especially in summer
- Primary production season is expected to increase in duration (light) but not in magnitude (nutrients) at pan-arctic scales
- Primary production and productivity increase in certain continental shelves and breaks; and move => Whose fisheries!?
- Primary production and productivity is not expected to increase in the deep Arctic Basin (not enough nutrients)
- The ecosystems of the Arctic Ocean will change their present day equilibrium. We do not know how the new equilibrium will support ecosystem services
- Our predictions are only as good as our validating data and process understanding are

Thank you!

