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Global change — local impacts

RCP 2.6 RCP 8.5
(a) Change in average surface temperature (1986-2005 to 2081-2100)
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Water as a source of conflicts: example Central Asia

TROUBLED WATERS

Border disputes over water access have broken out across central Asia where

major rivers and lakes cross state boundaries and where waters are diverted *,
for irrigation, hydroelectric power schemes and development. Flashpoints

include the Fergana Valley at the head of the Syr Darya river, the Rogun dam

in Tajikistan and the Golden Age Lake being constructed in Turkmenistan.
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Impact assessment ... seasonal availability of water?

S M. Hoelzle




Contribution potential of glaciers to water availability
in different climate regimes
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Systematic Observations

Systematic observations play a key role for
IPCC in detecting and attributing climate
change, to get an estimation of the global,
regional and local impacts and vulnerabillity.

Decision makers on different levels then rely
on such sound knowledge-based climate
services to take their decisions.

GCOS 2015



Global Framework of Climate Services

General service Adaptation to
applications variability and change

Mitigation

/"

Climate Services Information System
(GFCS)

f

Research, Modelling and Prediction
(GFCS)

AN Tcanmom

Observation and Monitoring (GFCS)

Bojinski et al. 2014
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Essential Climate Variables (ECVs)

ECVs are identified based on the following criteria:

 Relevance: The variable is critical for characterizing the
climate system and its changes.

* Feasibility: Observing or deriving the variable on a global
scale is technically feasible using proven, scientifically
understood methods.

* Cost effectiveness: Generating and archiving data on the
variable is affordable, mainly relying on coordinated
observing systems using proven technology, taking
advantage where possible of historical datasets.

Bojinski et al. 2014



Example ECV: glaciers

Zemp et al. 2015



Interrupted long-term measurements

Some selected long-term mass balance
time series in Central Asia
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Contrasting results of different studies about glacier mass changes

Zone Glacier This study Gardner et al. Neckel et al. Gardelle et al.
area (myr1, (2013; myr—1, (2014;myr~1, (2013;myr !,
(km2) + at lo-level) =+ at 2o -level) + at lo-level) & at lo-level)
Eastern Nyaingéntanglha? 6000 —-134+029 —-030+0.13 —081+032 —039+0.16
—040+041°
Bhutan 3500 —-089+0.16 —-089+0.18 —0.78+027 —026+0.15
Everest 8500 —-037+£010 —-044+020 —030+0.16
West Nepal 7500 —-043+009 —044+026 —038+0.16
Karakoram 21000 —-0.10£006 —012+£0.15 +0.12+0.19
Hindu Kush 3300 040010 014010
Pamir 6500 —-048+014 —-0.13+£022 +0.164+0.15

Area-weighted mean 80 500

—037+0.10
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Monthly glacier runoff at Kerki station estimated based on melt reconstructions of
Abramov glacier

Station Kerki
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Geodetic mass balance 1999-2011
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Mass balance 1969-2014 of Abramov glacier
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Selected Challenges occurring at different glacier monitoring sites

e Accumulation area:

» Thermal state of accumulation area influencing facies

Z0Nnes

» Accumulation distribution

e Ablation area:
»Albedo change

» Debris cover



Impacts of changes in firn facies zones

equilibrium line

accumulation

area ablation area

recrystallisation
zone

recrystallisation- snow line
infiltration zone

cold infiltration
zone

) warm infiltration superimposed
i Zeae ice zone

[] snow —— surface at end of summer
[ firn with ice layers —— surface at end of previous summer
and lenses
- superimposed ice maximum surface height in current year

maximum height of superimposed ice

» Change in accumulation processes warm vs
cold solid precipitation
» lce crust building at the surface

> Internal ice lenses influence on water transport

» Penetration depth of Radar signals (SRTM)




Increase of englacial temperatures and corresponding
change of firn facies zone
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Increase of ice layers influences runoff patterns

Machguth et al. 2016

Sen runott regime

1840 m

increase of number of ice lenses (transient

process)

ice layer act like a lid on the firn, preventing
the percolation of meltwater and forcing

meltwater to runoff the surface

the surface ice layer blocks the access to
the firn below, preventing further meltwater
storage in the still free available pores
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Monitoring of mass balance

Mass Balance

Geodetic Hydromet /
survey Model Reanalysis
data

calibration reconstruct

current, past,
future mass

balances
Direct Measurements Snowline
(stakes & snow pits) G observations
establish (satellites, cameras)

relationship



Current activities: eg CATCOS project caTcas

Capacity Building and Twinning for Climate Observing Systems

Capacity Development

Dual Domain

heric Domain
Measurements Of aerosols

and greenhouse gases
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Terrestrial Domain
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of in-situ glacier mass balance
observations, geodetic surveys

*:option

GCOS Regional Workshog
Strengthening of collaboration in
climate monitoring activities in
WMO Regional Associations

( April 2014 - September 2016 )
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Baseline data

Local meteo measurements

Mean Anual Air Temperature
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Abramov glacier, Pamir-Alay, Kyrgyzstan

Upper camera at Abramov

2011/2012

b.. (m w.e.)=-0.751

ABRAMOV GEAC :! e

Snow-Line detection, on Landsat Image‘s for 2002\

Seasonal Snow-Line Observation
Abramov Glacier- 2012
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Conclusions

« Glacier mass balance results today based on different studies with different
methods show strong differences with large uncertainties in important and large
mountain ranges

 There is a need for a glacier monitoring combining traditional measurements with
new technologies by using an integrated and multi-level strategy to improve
estimates of glacier related variables such as mass balance or runoff

What do we need to answer the question about future evolution of the ECV: glacier
« good in-situ measurements to reduce existing uncertainties
« good coverage of remote sensing data

« good models (if possible in transient mode) relying on a sound process
understanding

« good downscaling approaches for climate models

« combined analysis of in-situ observations, remotely sensed data and numerical
models
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