Radiative forcing and climate feedbacks:

News from the 4th Assessment Report of the Intergovernmental Panel on Climate Change

Ulrike Lohmann ETH Zürich Institute for Atmospheric and Climate Science

Drivers of Climate Change (Fig SPM1)

Forcing due to long-lived greenhouse gases (Fig 2.21)

Forcing due to short-lived gases (Fig 2.21)

Climate effects of aerosols

Observed aerosol optical depth (Fig 2.11)

Indirect cloud albedo effect from different models (Fig 2.14): mean value: -0.7 W/m² range: -1.8 to -0.3 W/m²

Upper panel: models with sulfate (S), sea salt (SS) and organic carbon (OC),

Lower panel: S, SS, OC, black carbon (BC), dust (D) and nitrate (N)

Forcing due to aerosols and precursors (Fig 2.21)

Radiative forcing: IPCC (2007) vs. IPCC (2001)

Human & natural drivers of climate change (Fig TS5)

There is *very high confidence* that the globally averaged net effect of human activities since 1750 has been one of warming, with a radiative forcing of +1.6 [+0.6 to +2.4] W m⁻²

From forcing to feedback (Fig 2.1)

Feedbacks for a given forcing (Ruddiman, 2001)

Physical feedbacks (Fig 8.14)

Clouds and radiation

Cloud feedbacks remain the largest source of uncertainty

Carbon cycle feedback (Fig. 10.20)

Warming tends to reduce land and ocean uptake of atmospheric CO_2 , increasing the fraction of anthropogenic emissions that remains in the atmosphere (causing a warming of more than 1°C for the A2 scenario).

Possible effects of a world without aerosols (Fig 7.24)

Summary

• There is very high confidence that the globally averaged net effect of human activities since 1750 has been one of warming, with a radiative forcing of +1.6 [+0.6 to +2.4] W m⁻²

• The combined radiative forcing due to increases in CO₂, CH₄, and N₂O is +2.30 [+2.07 to +2.53] W m⁻², and its rate of increase during the industrial era is very likely to have been unprecedented in more than 10,000 years

• Anthropogenic aerosols produce a cooling effect, with a total direct radiative forcing of -0.5 [-0.9 to -0.1] W m⁻² and an indirect cloud albedo forcing of -0.7 [-1.8 to -0.3] W m⁻²

• Water vapour changes represent the largest feedback affecting climate sensitivity. Cloud feedbacks remain the largest source of uncertainty.

• Warming tends to reduce land and ocean uptake of atmospheric CO_2 , increasing the fraction of anthropogenic emissions that remains in the atmosphere (causing a warming of more than 1°C for the A2 scenario)

Thank you very much for your attention!

Total anthropogenic aerosol effect (Figure 7-21)

Impact of anthropogenic aerosols on precipitation (Figure 7-22)

