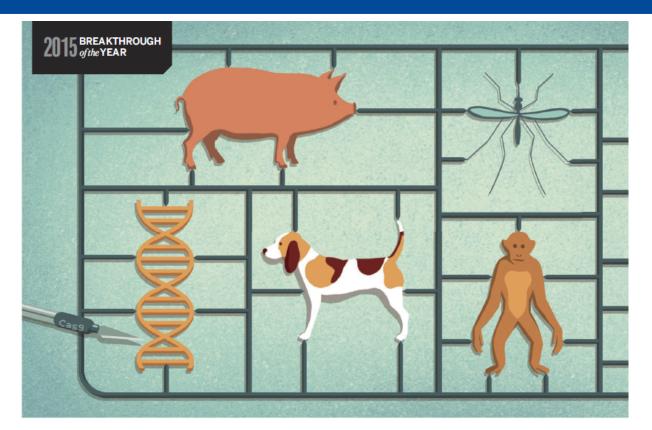


Synthetischer Biodiversitätsschutz

Prof. Dr. Gernot Segelbacher

Was ist synthetische Biologie?

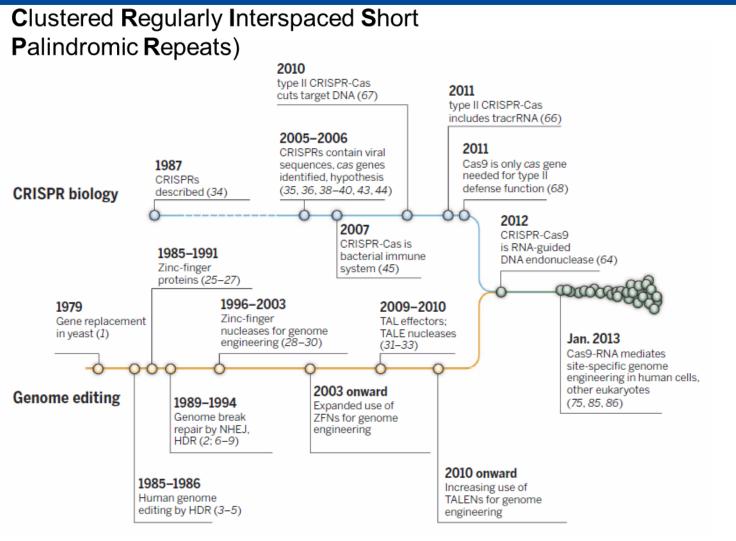
28.02.17



Was ist die wichtigste technische Errungenschaft der letzten Jahrzehnte?

Veränderung des Erbguts

Veränderung des Erbguts



Making the cut

CRISPR genome-editing technology shows its power

By John Travis

CRISPR

Geschichte der GMOs

GM Tier als Nahrung

recombinante DNA
Transgenes Tier
Schnelle DNA Sequenzierung
PCR
PCR
Senetisch Veränderte Pflanze

Somatischer Zell Transfer

human genome

Veränderte moskitos Synthetisches Bakteriengenor

الماسي الماسي

1001

2000

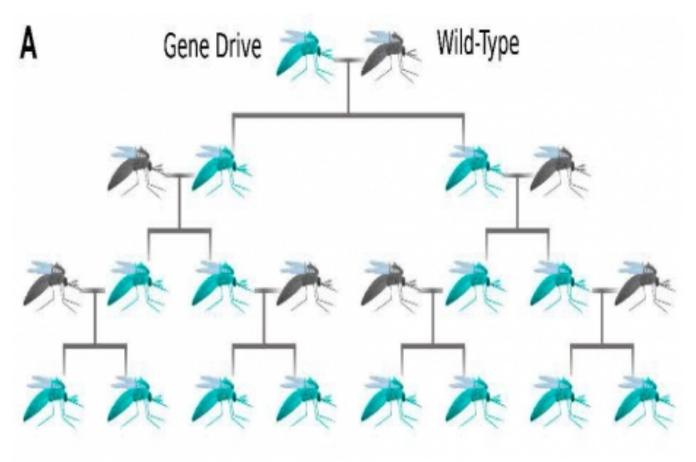
2020

22/20/20

Warum ist CRISPR so wichtig?

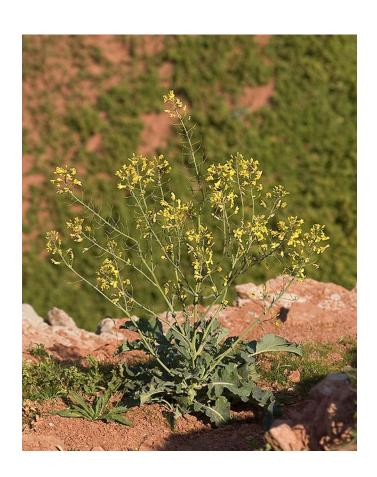
Genom veränderung durch CRISPR-CAS9

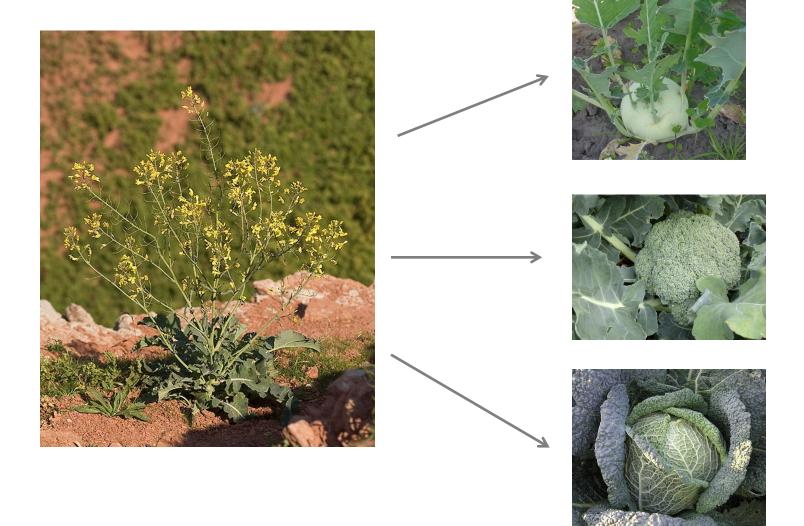
präzise, effizient, billig, einfach durchführbar


gene drive

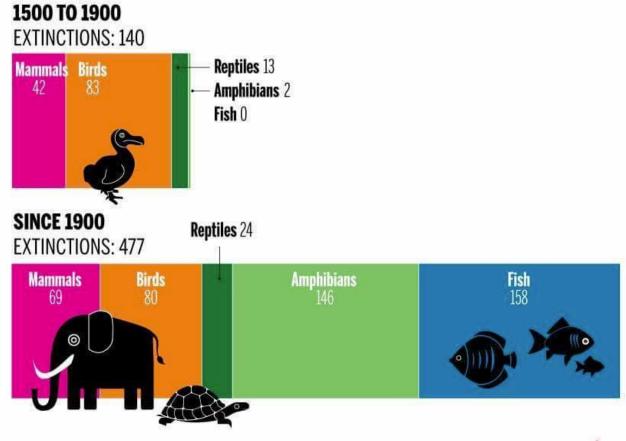
eine genetische Veränderung, die sich in einer Population von einer Generation zur nächsten durchsetzt

(synthetische Elemente werden dazu gemacht ihre Frequenz von einer Generation zur nächsten zu erhöhen)


-> künstliche Gene können sich damit schneller als durch klassische genetische Vererbung verbreiten



haben Menschen im Laufe der Geschichte nicht schon immer Genome verändert?



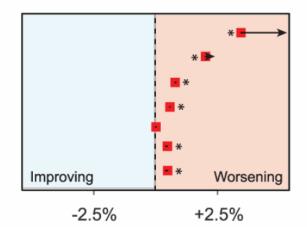
28.02.17

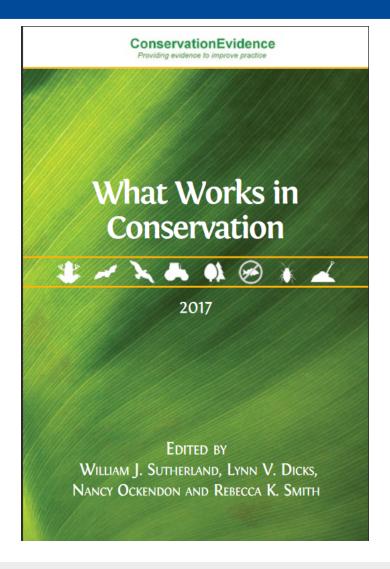
EXTINCT VERTEBRATES, 1500 TO PRESENT

Global Biodiversity Outlook 4

A mid-term assessment of progress towards the implementation of the Strategic Plan for Biodiversity 2011–2020

Sciencexpress


Reports


CONSERVATION TARGETS

A mid-term analysis of progress toward international biodiversity targets

Derek P. Tittensor,¹,²* Matt Walpole,¹ Samantha L. L. Hill,¹ Daniel G. Boyce,³,⁴ Gregory L. Britten,² Neil D. Burgess,¹,⁵ Stuart H. M. Butchart,⁶ Paul W. Leadley,⁻ Eugenie C. Regan,¹ Rob Alkemade,⁶ Roswitha Baumung,⁶ Céline Bellard,⁻ Lex Bouwman,⁶,¹0 Nadine J. Bowles-Newark,¹ Anna M. Chenery,¹ William W. L. Cheung,¹¹ Villy Christensen,¹¹ H. David Cooper,¹² Annabel R. Crowther,¹ Matthew J. R. Dixon,¹ Alessandro Galli,¹³ Valérie Gaveau,¹⁴ Richard D. Gregory,¹⁵ Nicolas L. Gutierrez,¹⁶ Tim L. Hirsch,¹² Robert Höft,¹² Stephanie R. Januchowski-Hartley,¹⁶ Marion Karmann,¹ゅ Cornelia B. Krug,७,²⁰ Fiona J. Leverington,²¹ Jonathan Loh,²² Rik Kutsch Lojenga,²³ Kelly Malsch,¹ Alexandra Marques,²⁴,²⁵ David H. W. Morgan,²⁶ Peter J. Mumby,²² Tim Newbold,¹ Kieran Noonan-Mooney,¹² Shyama N. Pagad,²⁶ Bradley C. Parks,²⁰ Henrique M. Pereira,²⁴,²⁵ Tim Robertson,¹² Carlo Rondinini,³⁰ Luca Santini,³⁰ Jörn P. W. Scharlemann,¹,³¹ Stefan Schindler,³²,³³ U. Rashid Sumaila,¹¹¹ Louise S.L. Teh,¹¹ Jennifer van Kolck,⁶ Piero Visconti,³⁴ Yimin Yeゥ

Pressure

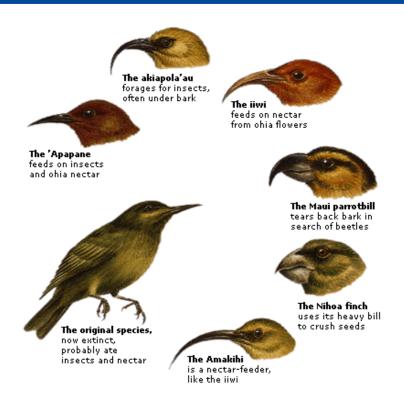
Hauptursachen

Habitatverlust

Krankheiten

Invasive Arten

Hauptursachen



Habitatverlust

Krankheiten

Invasive Arten

33 out of 42 extinct

Vogelmalaria als Bedrohung

Culex quiquefasciatus (1826 introduced)

"We have five, 10, maybe 15 years before we start seeing more declines...but some of these species don't have that much time and I don't want to see another species become extinct in my lifetime."

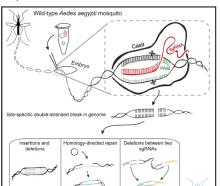
Pete Marra, director of the Smithsonian Institution's Migratory Bird Center.

Was wäre wenn....

Was wäre wenn....

wir Malaria eindämmen könnten?

LETTERS


nature biotechnology

A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector *Anopheles gambiae*

Andrew Hammond¹, Roberto Galizi¹, Kyros Kyrou¹, Alekos Simoni¹, Carla Siniscalchi², Dimitris Katsanos¹, Matthew Gribble¹, Dean Baker³, Eric Marois⁴, Steven Russell³, Austin Burt¹, Nikolai Windbichler¹, Andrea Crisanti¹ & Tony Nolan¹

Genome Engineering with CRISPR-Cas9 in the Mosquito Aedes aegypti

Graphical Abstract

Authors

Kathryn E. Kistler, Leslie B. Vosshall, Benjamin J. Matthews

Correspondence

ben.matthews@rockefeller.edu

In Brief

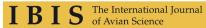
The mosquito Aedes aegypti is responsible for infecting hundreds of millions of humans with life-threatening diseases each year. Kistler et al. show that CRISPR-Cas9 can be used to engineer precise loss-of-function mutations and targeted integration of exogenous sequences, enabling detailed genetic study of this deadly disease vector.

Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito *Anopheles stephensi*

Valentino M. Gantz^{a,1}, Nijole Jasinskiene^{b,1}, Olga Tatarenkova^b, Aniko Fazekas^b, Vanessa M. Macias^b, Ethan Bier^{a,2}, and Anthony A. James^{b,c,2}

^aSection of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0349; ^bDepartment of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900; and ^cDepartment of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697-4500

A practical guide to genome-engineering with CRISPR-Cas9 in the mosquito *Aedes aegypti*


Kathryn E Kistler, Leslie B Vosshall, and Benjamin J Matthews *
February 4, 2015

Abstract

The following protocol is designed to help researchers generate precise genomic alterations in the mosquito Aedes aegypti using the CRISPR-Cas9 system of RNA-guided nucleases. A companion pre-print can be found at http://biorxiv.org/content/early/2014/12/30/013276.

Vögel auf Inseln

Ibis (2010), 152, 443-458

Review article

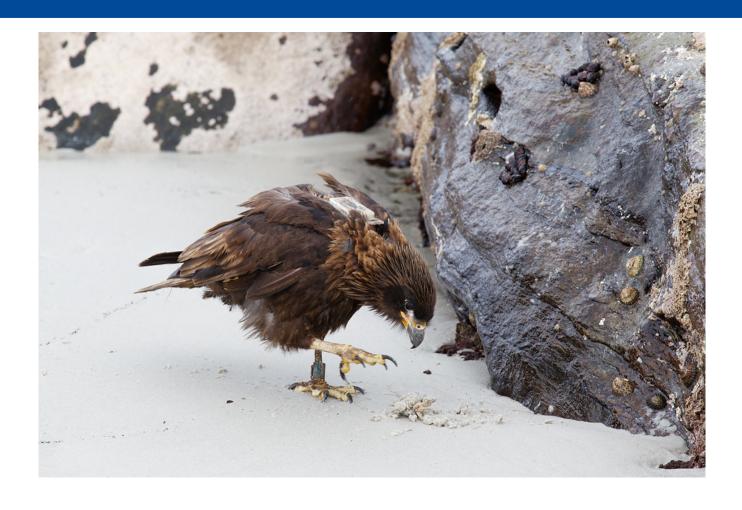
The catastrophic impact of invasive mammalian predators on birds of the UK Overseas Territories: a review and synthesis

GEOFF M. HILTON¹* & RICHARD J. CUTHBERT²

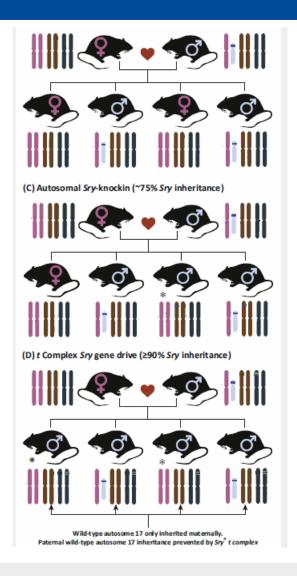
¹Wildfowl and Wetlands Trust, Slimbridge, Gloucestershire GL2 7BT, UK

²Royal Society for the Protection of Birds, The Lodge, Sandy, Bedfordshire SG19 2DL, UK

Invasive mammal eradication on islands results in substantial conservation gains


Holly P. Jones^{a,b,1}, Nick D. Holmes^c, Stuart H. M. Butchart^d, Bernie R. Tershy^e, Peter J. Kappes^f, Ilse Corkery^g, Alfonso Aguirre-Muñoz^h, Doug P. Armstrongⁱ, Elsa Bonnaudⁱ, Andrew A. Burbidge^k, Karl Campbell^{c,l}, Franck Courchampⁱ, Philip E. Cowan^m, Richard J. Cuthbert^{n,o}, Steve Ebbert^p, Piero Genovesi^{a,r}, Gregg R. Howald^c, Bradford S. Keitt^c, Stephen W. Kress^s, Colin M. Miskelly^t, Steffen Oppelⁿ, Sally Poncet^u, Mark J. Rauzon^r, Gérard Rocamora^{w,r}, James C. Russell^{y,z}, Araceli Samaniego-Herrera^h, Philip J. Seddon^{aa}, Dena R. Spatz^{c,e}, David R. Towns^{bb,c,e}, and Donald A. Croll^e

Ausrottung von Ratten



Was wäre wenn....

Was wäre wenn....

wir invasive Arten eindämmen könnten?

Risikoabschätzung

Nutzen

++

(Aussterben verhindert, natürlicher Lebensraum wieder hergestellt)

Risikoabschätzung

Nutzen

++

(Aussterben verhindert, natürlicher Lebensraum wieder hergestellt)

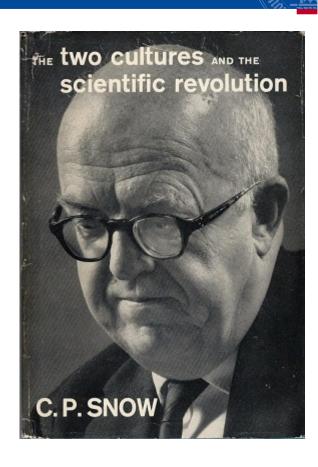
Risiko der Nichtnutzung

Verlust der Arten (keine Zeit mehr)

Risiko

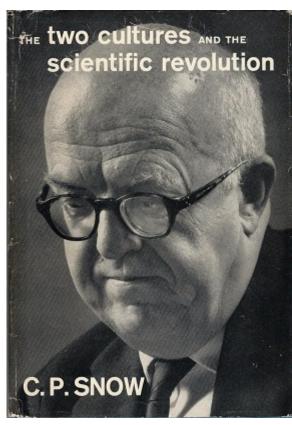
_

Ausbreitung ans Festland Hybridisierung mit anderen Arten



Zwei Kulturen

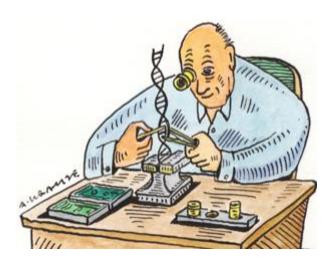
"... identified two cultures: those of the literary intellectuals and of the natural scientists, between who he claimed to find a profound mutual suspicion and incomprehension, which in turn has damaging consequences for the prospects of applying technology to the alleviation of the world's problems"


1959

(Extract from Collin Introduction of (Snow 1998).

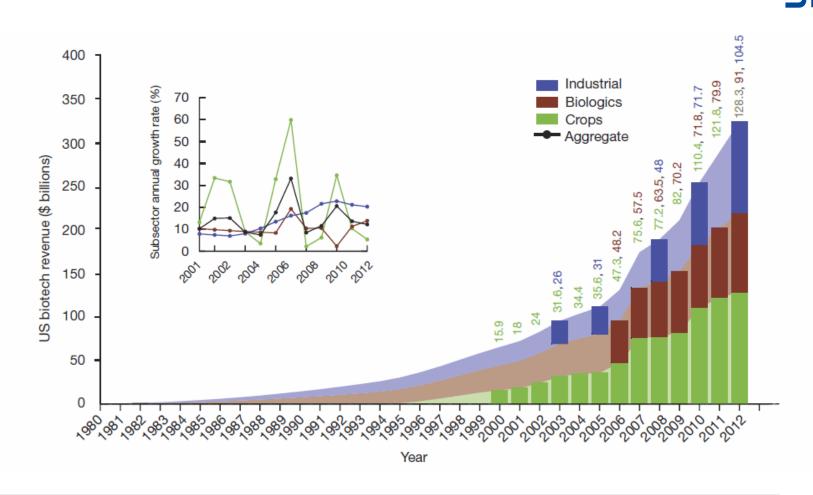
Bewahren – Gestalten?

synthetische Biologie



Was ist synthetische Biologie?

RE BURG


synthetische Biologie

Synthetische Biologie – die Anwendung von Wissenschaft und Technik um genetisches Material in lebenden Organismen zu entwickeln, erzeugen und/oder zu verändern

synthetische Biologie

synthetische Biologie

Anwendung heute:

Geschmacksstoffe, Düfte Pharmaka, Textilien, Chemikalien,

im Labor:

Feldfrüchte, Insekten, Tiere

Forschung

- -> Gentherapie an Stammzellen beim Menschen (e.g. National Academy of Sciences, 2015),
- -> menschliche Embryonenforschung (UK)

Naturschutzbiologie

Naturschutzbiologie – "Krisendisziplin" untersucht biologische Vielfalt um Arten, Lebensräume und Ökosysteme vor dem Aussterben zu schützen (1978)

Opinion: Is CRISPR-based gene drive a biocontrol silver bullet or global conservation threat?

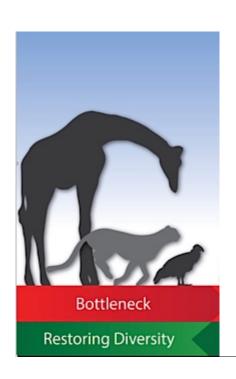
Bruce L. Webber^{a,b}, S. Raghu^c, and Owain R. Edwards^{a,1}

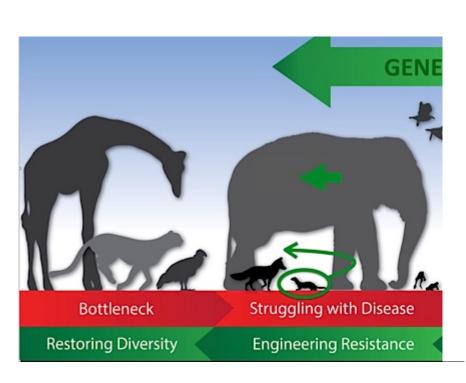
Cheating evolution: engineering gene drives to manipulate the fate of wild populations

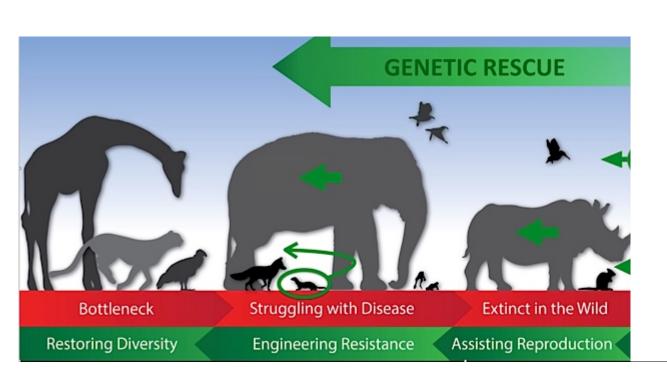
Animal Conservation

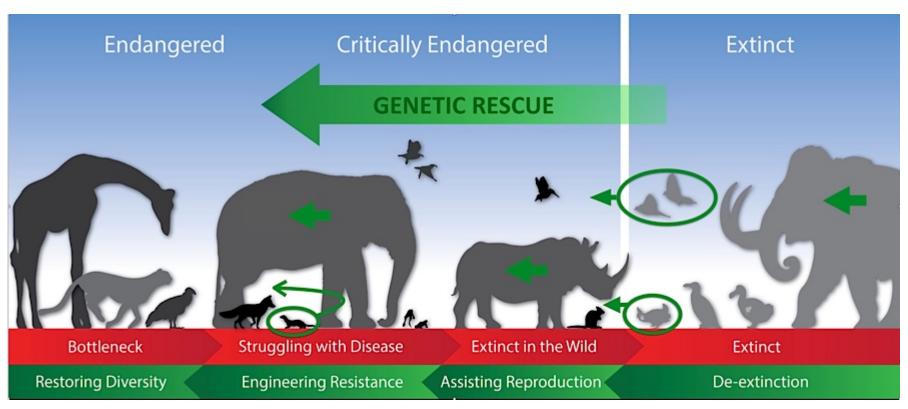
ZSL LETTS WYSTER

Animal Conservation. Print ISSN 1367-9430


EDITORIAL


Is there a future for genome-editing technologies in conservation?


J. A. Johnson¹, R. Altwegg², D. M. Evans³, J. G. Ewen⁴, I. J. Gordon⁵, N. Pettorelli⁴ & J. K. Young⁶


De – Extinction

Synthetische Biologie und die Biodiversitätskonvention (CBD)

Fünf Schlüsselentscheidungen für die COP 13 und die COP-MOP 8

Science & Society

No time to waste—the ethical challenges created by CRISPR

CRISPR/Cas, being an efficient, simple, and cheap technology to edit the genome of any organism, raises many ethical and regulatory issues beyond the use to manipulate human germ line cells

Arthur L Caplan¹, Brendan Parent¹, Michael Shen² & Carolyn Plunkett^{1,3}

BIOETHICS

Embryo engineering study splits scientific community

First test of gene-editing technique on human embryos illustrates clinical risks

Zukunft

Wahl:

Handeln oder nicht handeln

genetic -> genomic -> synthetic

UNI FREIBURG

genetic -> genomic -> synthetic

Interaktionen zwischen Forschungsfeldern früh wichtig

UNI FREIBURG

Wir sollten

- eng mit synthetischen Biologen zusammenarbeiten
- Fallstudien sorgfältig auswählen
- Verantwortung übernehmen

und gleichzeitig Gebiete unbeeinflusst lassen

ist das Genom die neue Wildnis?

ist das Genom die neue Wildnis?

TREE 2184 No. of Pages 11

Trends in Ecology & Evolution

Opinion

Is It Time for Synthetic Biodiversity Conservation?

Antoinette J. Piaggio, 1,17,* Gernot Segelbacher, 2,17 Philip J. Seddon, 3,17 Luke Alphey, 4,5 Elizabeth L. Bennett, 6 Robert H. Carlson, 7 Robert M. Friedman, 8 Dona Kanavy, 9 Ryan Phelan, 10 Kent H. Redford, 11,12 Marina Rosales, 13 Lydia Slobodian, 14 and Keith Wheeler 15,16