RUTGERS

Volcanic Eruptions as an Analog for Stratospheric Geoengineering

Alan Robock

Department of Environmental Sciences Rutgers University, New Brunswick, New Jersey

robock@envsci.rutgers.edu http://envsci.rutgers.edu/~robock

Rutgers

IUIGERS

http://data.giss.nasa.gov/gistemp/graphs_v3/Fig.A2.pdf Department of Environmental Sciences

Geoengineering is defined as

"deliberate large-scale manipulation of the planetary environment to counteract anthropogenic climate change."

Shepherd, J. G. S. et al., 2009: *Geoengineering the climate: Science, governance and uncertainty*, RS Policy Document 10/09, (London: The Royal Society).

Rutgers

RUTGERS

Stratospheric geoengineering

How could we actually get the sulfate aerosols into the stratosphere?

Artillery?

Aircraft?

Balloons?

Tower?

Starting from a mountain top would make stratospheric injection easier, say from the Andes in the tropics, or from Greenland in the Arctic.

Robock, Alan, Allison B. Marquardt, Ben Kravitz, and Georgiy Stenchikov, 2009: The benefits, risks, and costs of stratospheric geoengineering. *Geophys. Res. Lett.*, **36**, L19703, doi: 10.1029/2009GL039209.

RUTGERS

Drawing by Brian West

Stratospheric Geoengineering

<u>Benefits</u>

- 1. Reduce surface air temperatures, which could reduce or reverse negative impacts of global warming, including floods, droughts, stronger storms, sea ice melting, land-based ice sheet melting, and sea level rise
- 2. Increase plant productivity
- 3. Increase terrestrial CO_2 sink
- 4. Beautiful red and yellow sunsets
- 5. Unexpected benefits

Each of these needs to be quantified so that society can make informed decisions.

Robock, Alan, 2008: 20 reasons why geoengineering may be a bad idea. *Bull. Atomic Scientists*, **64**, No. 2, 14-18, 59, doi: 10.2968/064002006.

Robock, Alan, Allison B. Marquardt, Ben Kravitz, and Georgiy Stenchikov, 2009: The benefits, risks, and costs of stratospheric geoengineering. *Geophys. Res. Lett.*, **36**, L19703, doi: 10.1029/2009GL039209.

Robock, Alan, 2014: Stratospheric aerosol geoengineering. *Issues Env. Sci. Tech.* (Special issue "Geoengineering of the Climate System"), **38**, 162-185.

- 1. Drought in Africa and Asia
- 2. Perturb ecology with more diffuse radiation
- 3. Ozone depletion
- 4. Continued ocean acidification
- 5. Impacts on tropospheric chemistry
- 6. Whiter skies
- 7. Less solar electricity generation
- 8. Degrade passive solar heating
- 9. Rapid warming if stopped
- 10. Cannot stop effects quickly
- 11. Human error
- 12. Unexpected consequences
- 13. Commercial control
- 14. Military use of technology
- 15. Societal disruption, conflict between countries
- 16. Conflicts with current treaties
- 17. Whose hand on the thermostat?
- 18. Effects on airplanes flying in stratosphere
- 19. Effects on electrical properties of atmosphere
- 20. Environmental impact of implementation
- 21. Degrade terrestrial optical astronomy
- 22. Affect stargazing
- 23. Affect satellite remote sensing
- 24. More sunburn
- 25. Moral hazard the prospect of it working would reduce drive for mitigation
- 26. Moral authority do we have the right to do this? Department of Environmental Sciences

<u>Risks</u>

Stratospheric Geoengineering

<u>Benefits</u>

- 1. Reduce surface air temperatures, which could reduce or reverse negative impacts of global warming, including floods, droughts, stronger storms, sea ice melting, land-based ice sheet melting, and sea level rise
- 2. Increase plant productivity
- 3. Increase terrestrial CO_2 sink
- 4. Beautiful red and yellow sunsets
- 5. Unexpected benefits

Being addressed by GeoMIP

Robock, Alan, 2008: 20 reasons why geoengineering may be a bad idea. *Bull. Atomic Scientists*, **64**, No. 2, 14-18, 59, doi: 10.2968/064002006.

Robock, Alan, Allison B. Marquardt, Ben Kravitz, and Georgiy Stenchikov, 2009: The benefits, risks, and costs of stratospheric geoengineering. *Geophys. Res. Lett.*, **36**, L19703, doi: 10.1029/2009GL039209.

Robock, Alan, 2014: Stratospheric aerosol geoengineering. *Issues Env. Sci. Tech.* (Special issue "Geoengineering of the Climate System"), **38**, 162-185.

- 1. Drought in Africa and Asia
- 2. Perturb ecology with more diffuse radiation
- 3. Ozone depletion
- 4. Continued ocean acidification
- 5. Impacts on tropospheric chemistry
- 6. Whiter skies
- 7. Less solar electricity generation
- 8. Degrade passive solar heating
- 9. Rapid warming if stopped
- 10. Cannot stop effects quickly
- 11. Human error
- 12. Unexpected consequences
- 13. Commercial control
- 14. Military use of technology
- 15. Societal disruption, conflict between countries
- 16. Conflicts with current treaties
- 17. Whose hand on the thermostat?
- 18. Effects on airplanes flying in stratosphere
- 19. Effects on electrical properties of atmosphere
- 20. Environmental impact of implementation
- 21. Degrade terrestrial optical astronomy
- 22. Affect stargazing
- 23. Affect satellite remote sensing
- 24. More sunburn
- 25. Moral hazard the prospect of it working would reduce drive for mitigation
- 26. Moral authority do we have the right to do this? Department of Environmental Sciences

<u>Risks</u>

GeoMIP

We are carrying out standard experiments with the new GCMs being run as part of CMIP5 using identical global warming and geoengineering scenarios, to see whether our results are robust.

For example, how will the hydrological cycle respond to stratospheric geoengineering? Will there be a significant reduction of Asian monsoon precipitation? How will ozone and UV change?

Kravitz, Ben, Alan Robock, Olivier Boucher, Hauke Schmidt, Karl Taylor, Georgiy Stenchikov, and Michael Schulz, 2011: The Geoengineering Model Intercomparison Project (GeoMIP). *Atmospheric Science Letters*, **12**, 162-167, doi:10.1002/asl.316.

GeoMIP is a CMIP Coordinated Experiment, as part of the Climate Model Intercomparison Project 5 (CMIP5).

Results from G2 experiments by 11 climate models.

This is a 1%/year increase of CO_2 balanced by a reduction of insolation.

Jones, Andy, et al., 2013: The impact of abrupt suspension of solar radiation management (termination effect) in experiment G2 of the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos., 118, 9743-9752, doi:10.1002/jgrd.50762.

dotted lines are $+1\%/yr CO_2$

solid lines are G2

Results from G1 experiments by 12 climate models

This is a very artificial experiment, with large forcing so as to get large response.

Shown are averages from years 11-50 of the simulations, balancing 4×CO₂ with solar radiation reduction to achieve global average radiation balance.

Tilmes, Simone, et al., 2013: The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos., 118, 11,036-11,058, doi:10.1002/jgrd.50868.

Monsoon regions

Years 11-50

RUTGERS

Stratospheric Geoengineering

<u>Benefits</u>

- Reduce surface air temperatures, which could reduce or reverse negative impacts of global warming, including floods, droughts, stronger storms, sea ice melting, land-based ice sheet melting, and sea level rise
- 2. Increase plant productivity
- 3. Increase terrestrial CO₂ sink
- 4. Beautiful red and yellow sunsets
- 5. Unexpected benefits

Volcanic analog

Robock, Alan, Douglas G. MacMartin, Riley Duren, and Matthew W. Christensen, 2013: Studying geoengineering with natural and anthropogenic analogs. *Climatic Change*, **121**, 445-458, doi: 10.1007/s10584-013-0777-5.

Robock, Alan, Allison B. Marquardt, Ben Kravitz, and Georgiy Stenchikov, 2009: The benefits, risks, and costs of stratospheric geoengineering. *Geophys. Res. Lett.*, **36**, L19703, doi: 10.1029/2009GL039209.

Robock, Alan, 2014: Stratospheric aerosol geoengineering. *Issues Env. Sci. Tech.* (Special issue "Geoengineering of the Climate System"), **38**, 162-185.

- 1. Drought in Africa and Asia
- 2. Perturb ecology with more diffuse radiation

Risks

- 3. Ozone depletion
- 4. Continued ocean acidification
- 5. Impacts on tropospheric chemistry
- 6. Whiter skies
- 7. Less solar electricity generation
- 8. Degrade passive solar heating
- 9. Rapid warming if stopped
- 10. Cannot stop effects quickly
- 11. Human error
- 12. Unexpected consequences
- 13. Commercial control
- 14. Military use of technology
- 15. Societal disruption, conflict between countries
- 16. Conflicts with current treaties
- 17. Whose hand on the thermostat?
- 18. Effects on airplanes flying in stratosphere
- 19. Effects on electrical properties of atmosphere
- 20. Environmental impact of implementation
- 21. Degrade terrestrial optical astronomy
- 22. Affect stargazing
- 23. Affect satellite remote sensing
- 24. More sunburn
- 25. Moral hazard the prospect of it working would reduce drive for mitigation
- 26. Moral authority do we have the right to do this? Department of Environmental Sciences

Rutgers

Tambora, 1815, produced the "Year Without a Summer" (1816)

Percy Bysshe Shelley

Mary Shelley

George Gordon, Lord Byron

Rutgers

LORD BYRON poète anglais auteur du PRISONER « CHILLON habita la VILLA DIODATI EN 1816 YCOMPOSA LE 3« CHANT DE CHILDE HAROLD

1783-84, Lakagígar (Laki), Iceland

1783-84 Laki Eruption in Iceland (8 June 1783 – 7 February 1784)

Second largest flood lava eruption in historical time

Iceland's biggest natural disaster

Lava = 14.7 km³ Tephra = 0.4 km³

WVZ, EVZ, NVZ are Western, Eastern and Northern Volcanic Zones

NVZ Grímsvötn 00kn Laki EVZ

Rutgers

Fig. 1 from Thordarson and Self (2003)

Laki SAT Anomaly (°C) JJA 1783 q-flux

Constantin-François de Chasseboeuf, Comte de Volney Travels through Syria and Egypt, in the years 1783, 1784, and 1785, Vol. I Dublin, 258 pp. (1788)

"The inundation of 1783 was not sufficient, great part of the lands therefore could not be sown for want of being watered, and another part was in the same predicament for want of seed. In 1784, the Nile again did not rise to the favorable height, and the dearth immediately became excessive. Soon after the end of November, the famine carried off, at Cairo, nearly as many as the plague; the streets, which before were full of beggars, now afforded not a single one: all had perished or deserted the city."

By January 1785, 1/6 of the population of Egypt had either died or left the country in the previous two years.

http://www.academie-francaise.fr/images/immortels/portraits/volney.jpg

FAMINE IN INDIA AND CHINA IN 1783

The Chalisa Famine devastated India as the monsoon failed in the summer of 1783.

There was also the Great Tenmei Famine in Japan in 1783-1787, which was locally exacerbated by the Mount Asama eruption of 1783.

What about other high latitude eruptions?

There have been three major high latitude eruptions in the past 2000 years:

939 Eldgjá, Iceland - <u>Tropospheric and stratospheric</u>

1783-84 Lakagígar (Laki), Iceland - Same as Eldgjá

1912 Novarupta (Katmai), Alaska - <u>Stratospheric only</u>

Rutgers

http://www.isiimm.agropolis.org

Alan Robock Department of Environmental Sciences

BRD 30785

Drawn by Makiko Sato (NASA GISS)

using CRU TS 2.0 data

TGERS

L15702

Trenberth and Dai (2007) Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as

an analog of geoengineering

Geophys. Res. Lett.

Figure 3. (a) Observed precipitation anomalies (relative to 1950–2004 mean) in mm/day during October 1991– September 1992 over land. Warm colors indicate below normal precipitation. (b) As for Figure 3a but for the simulated runoff [*Qian et al.*, 2006] using a comprehensive land surface model forced with observed precipitation and other atmospheric forcing in mm/day. (c) Palmer Drought Severity Index (PDSI, multiplied by 0.1) for October 1991–September 1992 [*Dai et al.*, 2004]. Warm colors indicate drying. Values less than –2 (0.2 on scale) indicate moderate drought, and those less than –3 indicate severe drought.

Summer monsoon drought index pattern using tree rings for 750 years

Figure 2. Superposed epoch analysis using the reconstructed PDSI values from the Monsoon Asia Drought Atlas (MADA) [Cook et al., 2010] and the sets of events years shown in Table 1. Statistically significant (90% one-tailed) epochal anomalies based on Monte Carlo resampling (n = 10,000) are indicated by crosses.

Anchukaitis et al. (2010), Influence of volcanic eruptions on the climate of the Asian monsoon region. *Geophys. Res. Lett.*, *37*, L22703, doi:10.1029/2010GL044843

Rutgers

Department of Environmental Sciences

FIG. 1. (a) Results of superposed epoch analysis of modeled summer precipitation for 18 cases of large volcanic eruption showing the response of summer precipitation over eastern China. Bootstrapping procedures are used to assess the statistical significance of summer precipitation above and below the mean. The dashed and dotted lines represent confidence intervals of 90%, 95%, and 99% derived from 1000 Monte Carlo simulations. (b) Spatial pattern of composite anomalies of summer precipitation over East Asia and tropical oceans during the volcanic eruption year for 18 cases of large volcanic eruption; yellow box shows our study area.

NCAR CCSM 2.0.1 simulation for past 1000 years

Peng, Youbing, Caiming Shen, Wei-chyung Wang, and Ying Xu, 2010: Response of summer precipitation over Eastern China to large volcanic eruptions. J. Climate, 23, 818-825.

Volcanic aerosols produce more reactive chlorine

RUTGERS

Solomon (1999)

Department of Environmental Sciences

Tropospheric chlorine diffuses to stratosphere.

Volcanic aerosols make chlorine available to destroy ozone.

Solomon (1999)

GERS

RUTGERS

Robock (1983)

Krakatau, 1883 Watercolor by William Ascroft

GERS

Figure from Symons (1888)

Department of Environmental Sciences

"The Scream" Edvard Munch

Painted in 1893 based on Munch's memory of the brilliant sunsets following the 1883 Krakatau eruption.

GERS

Sunset over Lake Mendota, July 1982

Diffuse Radiation from Pinatubo Makes a Whiter Sky

Photographs by Alan Robock

Rutgers

Department of Environmental Sciences

Robock (2000), Dutton and Bodhaine (2001)

Geoengineering: Whiter skies?

Ben Kravitz,1 Douglas G. MacMartin,2 and Ken Caldeira1

Received 9 March 2012; revised 1 May 2012; accepted 2 May 2012; published 1 June 2012.

[1] One proposed side effect of geoengineering with stratospheric sulfate aerosols is sky whitening during the day and afterglows near sunset, as is seen after large volcanic eruptions. Sulfate aerosols in the stratosphere would increase diffuse light received at the surface, but with a non-uniform spectral distribution. We use a radiative transfer model to calculate spectral irradiance for idealized size distributions of sulfate aerosols. A 2% reduction in total irradiance, approximately enough to offset anthropogenic warming for a doubling of CO₂ concentrations, brightens the sky (increase in diffuse light) by 3 to 5 times, depending on the aerosol size distribution. The relative increase is less when optically thin cirrus clouds are included in our simulations. Particles with small radii have little influence on the shape of the spectra. Particles of radius ~0.5 µm preferentially increase diffuse irradiance in red wavelengths, whereas large particles (~0.9 µm) preferentially increase diffuse irradiance in blue wavelengths. Spectra show little change in dominant wavelength, indicating little change in sky hue, but all particle size distributions produce an increase in white light relative to clear sky conditions. Diffuse sky spectra in our simulations of geoengineering with stratospheric aerosols are similar to those of average conditions in urban areas today. Citation: Kravitz, B., D. G. MacMartin, and K. Caldeira (2012), Geoengineering: Whiter skies?, Geophys. Res. Lett., 39, L11801, doi:10.1029/2012GL051652.

Alan Robock onmental Sciences

RUTGE

http://www.electronichealing.co.uk/articles/solar_power_tower_spain.htm

RUTGERS

Department of Environmental Sciences

Output of solar electric generating systems (SEGS) solar thermal power plants in California (9 with a combined capacity of 354 peak MW). (Murphy, 2009, ES&T)

Rutgers

El Chichón

Pinatubo

Additional carbon sequestration after volcanic eruptions because of the effects of diffuse radiation, but certainly will impact natural and farmed vegetation.

nature

Vol 458 23 April 2009 doi:10.1038/nature07949

LETTERS

Impact of changes in diffuse radiation on the global land carbon sink

RUTG

Lina M. Mercado¹, Nicolas Bellouin², Stephen Sitch², Olivier Boucher², Chris Huntingford¹, Martin Wild³ & Peter M. Cox⁴ Alan Robock onmental Sciences

Subaru (8-m mirror) Keck 1 and 2 (10-m mirrors)

Mauna Kea Observatory, Big Island, Hawaii

Haleakala Observatories, Maui, Hawaii

Are We Ready for the Next Big Volcanic Eruption?

Scientific questions to address:

What will be the size distribution of sulfate aerosol particles created by geoengineering?

How will the aerosols be transported throughout the stratosphere?

- How do temperatures change in the stratosphere as a result of the aerosol interactions with shortwave (particularly near IR) and longwave radiation?
- Are there large stratospheric water vapor changes associated with stratospheric aerosols? Is there an initial injection of water from the eruption?
- Is there ozone depletion from heterogeneous reactions on the stratospheric aerosols?
- As the aerosols leave the stratosphere, and as the aerosols affect the upper troposphere temperature and circulation, are there interactions with cirrus and other clouds?

How will tropospheric chemistry be affected by stratospheric geoengineering?

Do stratospheric aerosols grow with large SO_2 injections?

"Successively larger SO₂ injections do not create proportionally larger optical depths because successively larger sulfate particles are formed."

Fig. 3. The lognormal mode radius of the aerosol number size distribution for the SO_2 injections shown in Figure 2, as a function of time. Areas refer to the initial area of the cloud over which oxidation is assumed to occur.

Pinto, J. R., R. P. Turco, and O. B. Toon, 1989: Self-limiting physical and chemical effects in volcanic eruption clouds. *J. Geophys. Res.*, 94, 11,165–11,174, doi:10.1029/JD094iD08p11165.

Heckendorn et al. (2009) showed particles would grow, requiring much larger injections for the same forcing.

Environ. Res. Lett. 4 (2009) 045108

P Heckendorn et al

Figure 4. (a) Total acrosol burden as function of sulfur injected annually into the stratosphere (0, 1, 2, 5 and 10 Mt/a S) calculated by the AER model. Dash-dotted line: acrosol burden, if the acrosol residence time were 1 year irrespective of injection strength. Dashed line: acrosol burden when acrosol sedimentation is suppressed in the stratosphere. All results for injections at 20 km, except black square for 24 km emissions. (b) Change in global annual mean net SW flux change at the surface due to geoengineering in comparison with GEO0 calculated by SOCOL for all-sky conditions. Vertical bars: standard deviation of monthly values. Triangles: SW downward flux changes due to geoengineering as proposed by Robock *et al* (2008). All lines in both panels are meant to guide the eye.

RUTGERS

"It combines both particle density, calculated from SAGE II extinctions, and effective radii, calculated for different altitudes from ISAMS [Improved Stratospheric And Mesospheric Sounder on UARS] measurements."

Rutgers

Stenchikov, Georgiy L., Ingo Kirchner, Alan Robock, Hans-F. Graf, Juan Carlos Antuña, R. G. Grainger, Alyn Lambert, and Larry Thomason, 1998: Radiative forcing from the 1991 Mount Pinatubo volcanic eruption. *J. Geophys. Res.*, **103**, 13,837-13,857.

Are We Ready for the Next Big Volcanic Eruption?

Desired observations or outdoor experiments:

Balloons

Airships (blimps in the stratosphere)

Aircraft and drones (up to 20 km currently)

Lidar (ground-based and on satellites)

Satellite radiometers, both nadir and limb pointing

Spraying a small amount of SO₂ into the volcanic aerosol cloud to see if you get more or larger particles?

RUTGERS

An artist's rendering of a stratospheric airship in flight. Credit Keck Institute for Space Studies/Eagre Interactive

Rutgers

http://www.nytimes.com/2014/08/26/science/airships-that-carry-science-into-the-stratosphere.html

RUTGERS

Robock (1983)

RUTGERS

Sponsors: U.S. National Academy of Sciences, U.S. intelligence community, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, and U.S. Department of Energy

Sponsors: U.S. National Academy of Sciences, U.S. intelligence community, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, and U.S. Department of Energy

THERE IS NO SUBSTITUTE FOR MITIGATION AND ADAPTATION

WHY "CLIMATE INTERVENTION"?

There are several meanings to the term "geoengineering"

In general, the term "engineering" implies a more precisely tailored and controllable process than might be the case for climate interventions

Intervention is an action intended to improve a situation

BOARD ON ATMOSPHERIC SCIENCES AND CLIMATE

OF THE NATIONAL ACADEMIES

GERS

CARBON DIOXIDE REMOVAL READY FOR INCREASED RESEARCH AND DEVELOPMENT

ALBEDO MODIFICATION POSES SIGNIFICANT RISKS

Environmental risks - both known and poorly known

- Decreases in stratospheric ozone
- Changes in the amount and patterns of precipitation
- No reduction of root cause of climate change (greenhouse gases)
- Poorly understood regional variability
- Potential risk of millennial dependence

Significant potential for unanticipated, unmanageable, and regrettable consequences

Including political, social, legal, economic, and ethical dimensions

Recommendation 3: Albedo modification at scales sufficient to alter climate should not be deployed at this time

BOARD ON ATMOSPHERIC SCIENCES AND CLIMATE

16

OF THE NATIONAL ACADEMIES

ALBEDO MODIFICATION RESEARCH

Research needed to determine if albedo modification could be viable climate response

- If there were a climate emergency
- Could it be key part of a portfolio of responses?

Better understanding of consequences needed if there were an action by a unilateral / uncoordinated actor

Recommendation 4:

The Committee recommends an albedo modification research program be developed and implemented that emphasizes multiple benefit research that furthers

- basic understanding of the climate system
- and its human dimensions

BOARD ON ATMOSPHERIC SCIENCES AND CLIMATE NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIES

RUTGERS

ALBEDO MODIFICATION RESEARCH

Current observational capabilities lack sufficient capacity to detect and monitor environmental effects of albedo modification deployment

Recommendation 5: The Committee recommends that the United States improve its capacity to detect and measure changes in radiative forcing and associated changes in climate

BOARD ON ATMOSPHERIC SCIENCES AND CLIMATE

18

OF THE NATIONAL ACADEMIES

Rec	commendation 6:
The del	• Committee recommends the initiation of a serious iberative process to examine:
(a)	what types of research governance, beyond those that already exist, may be needed for albedo modification research, and
(b)	the types of research that would require such governance, potentially based on the magnitude of their expected impact on radiative forcing, their potential for detrimental direct and indirect effects, and other considerations

Stratospheric Geoengineering

<u>Benefits</u>

- Reduce surface air temperatures, which could reduce or reverse negative impacts of global warming, including floods, droughts, stronger storms, sea ice melting, land-based ice sheet melting, and sea level rise
- 2. Increase plant productivity
- 3. Increase terrestrial CO_2 sink
- 4. Beautiful red and yellow sunsets
- 5. Unexpected benefits

Not testable with GeoMIP or the volcanic analog

Robock, Alan, Douglas G. MacMartin, Riley Duren, and Matthew W. Christensen, 2013: Studying geoengineering with natural and anthropogenic analogs. *Climatic Change*, **121**, 445-458, doi: 10.1007/s10584-013-0777-5.

Robock, Alan, Allison B. Marquardt, Ben Kravitz, and Georgiy Stenchikov, 2009: The benefits, risks, and costs of stratospheric geoengineering. *Geophys. Res. Lett.*, **36**, L19703, doi: 10.1029/2009GL039209.

Robock, Alan, 2014: Stratospheric aerosol geoengineering. *Issues Env. Sci. Tech.* (Special issue "Geoengineering of the Climate System"), **38**, 162-185.

- 1. Drought in Africa and Asia
- 2. Perturb ecology with more diffuse radiation
- 3. Ozone depletion
- 4. Continued ocean acidification
- 5. Impacts on tropospheric chemistry
- 6. Whiter skies
- 7. Less solar electricity generation
- 8. Degrade passive solar heating
- 9. Rapid warming if stopped
- 10. Cannot stop effects quickly
- 11. Human error
- 12. Unexpected consequences
- 13. Commercial control
- 14. Military use of technology
- 15. Societal disruption, conflict between countries
- 16. Conflicts with current treaties
- 17. Whose hand on the thermostat?
- 18. Effects on airplanes flying in stratosphere
- 19. Effects on electrical properties of atmosphere
- 20. Environmental impact of implementation
- 21. Degrade terrestrial optical astronomy
- 22. Affect stargazing
- 23. Affect satellite remote sensing
- 24. More sunburn
- 25. Moral hazard the prospect of it working would reduce drive for mitigation
- 26. Moral authority do we have the right to do this? Department of Environmental Sciences

<u>Risks</u>

London Sunset After Krakatau 4:40 p.m., Nov. 26, 1883 Watercolor by William Ascroft Figure from Symons (1888)

"The Scream" Edvard Munch

Painted in 1893 based on Munch's memory of the brilliant sunsets following the 1883 Krakatau eruption.

GERS

