Experimental design and statistics

Michael FW Festing michaelfesting@aol.com
 www.3Rs-Reduction.co.uk

How do we acquire knowledge?

Cross-sectional
Cohort studies

Correlation but not causation

Randomised experiments $\}$ Causation

Survey of 271 randomly selected papers using animals

- 87% did not report random allocation of subjects to treatments
- 86% did not report "blinding" where it seemed to be appropriate
- 100% failed to justify the sample sizes used
- 5\% did not clearly state the purpose of the study
- 6% did not indicate how many separate experiments were done
- 13\% did not identify the experimental unit
- 26% failed to state the sex of the animals
- 24% reported neither age not weight of animals

4\% did not mention the number of animals used

- 35% which reported numbers used, these differed in the materials and methods and the results sections

[^0]
Statistics and design

- Experimental design:
- Controlling variability
- Requires a good knowledge of biology and sources of biological variation
- Statistics:
- Deals with the variation which was not controlled by the design
- At elementary level requires an understanding of data and statistical software
- At advanced level requires a good understanding of mathematics

Types of controlled experiment

- Pilot study
- Logistics and preliminary information
- Exploratory experiment
- To provide data to generate hypotheses
- May "work" or "not work"
- Often many outcomes
- Statistical analysis may be problematical (many characters measured, data snooping).
- Confirmatory experiment
- Simple formal hypothesis stated a priori. p-values must be correct
- Experiments to estimate relationships between variables (regression and correlation)

A well designed experiment

- Absence of bias
- Experimental unit, randomisation, blinding
- High power
- Low noise (uniform material, blocking, covariance)
- High signal (sensitive subjects, high dose)
- Large sample size
- Wide range of applicability
- Replicate over other factors (e.g. sex, strain): factorial designs
- (Simplicity)
- (Amenable to a statistical analysis)

Experimental Unit

The smallest division of the experimental material such that any two experimental units can receive different treatments

The animal as the experimental unit

Animals individually treated. May be individually housed or grouped

$$
N=8
$$

What is the Experimental Unit?

Treatment in water or diet.

Two tanks of fish

Teratology: mother treated, young measured

Animals given four treatments sequentially.
What is the experimental unit?

An animal for a period of time, $\mathrm{N}=16$

What is the experimental unit?

Humans who suffer from depression seem to be more sensitive to pain. An investigator wants to know if this is also the case in rats.

WKY rats are used as a model of depression Wistar rats are not depressive.

So he obtains 10 rats of each strain, houses them two per cage for three weeks and tests them using a standard test of pain threshold.

What is the experimental unit in this experiment?

Failure to identify the experimental unit correctly (aim to look at strain differences in diurnal pattern of blood alcohol)

Time (h)

Time (h)

Single cage of 8 mice killed at each time point ($36 \times 8=288$ mice in totall)

Randomisation of 12 animals to three treatments (A-C) using EXCEL

1. The treatment designations A-C were put in the first column, 4 subjects per treatment
2. A random number was put in the second one (preferably as "values")
3. The columns were then sorted on the random number column to give column 3 in random order. The animal numbers are then added
4. In this case the first three animals will be assigned to A, the $4^{\text {th }}$. To C etc.

Original	=rand()	Sorted on =rand()		Animal number
A	0.527	A	0.067	1
A	0.100	A	0.100	2
A	0.067	A	0.122	3
A	0.122	C	0.210	4
B	0.665	B	0.248	5
B	0.875	C	0.265	6
B	0.478	B	0.478	7
B	0.248	A	0.527	8
C	0.210	C	0.628	9
C	0.628	B	0.665	10
C	0.265	B	0.875	11
C	0.895	C	0.895	12

Sometimes a random order doesn' t look very random, such as when the first three animals (here) all receive treatment A. But use this sort of method and you won' t go far wrong.

Experimental units need to be randomised to treatments then blinded to help avoid bias

Randomisation, blinding and cage assignment

Randomized Mouse
B $\quad 1$

C 2
C 3
A 4
B
A
B
A
C
B
C
A
5
6
7
8
C
10
11
12

Cages
$B C D A$ etc individually housed
B, X C,X C, X etc individual + companion
B,C,C, A.B,AB etc Grouped at random
$A B C$ ABC etc Randomised block
AA $A A B B$

etc Two/box. Box $=\operatorname{ExpU}{ }^{7}$

Failure to randomise and/or blind leads to more "positive" results

Blind/not blind	odds ratio	3.4 (95\% CI 1.7-6.9)
Random/not random	odds ratio	3.2 (95\% CI 1.3-7.7)
Blind Random/ not blind random	odds ratio	5.2 (95\% CI 2.0-13.5)
290 animal studies scored for blinding, randomisation and positive/ negative outcome, as defined by authors		

Bebarta et al 2003 Acad. emerg. med. 10:684-687
"Classification variables" (e.g. strain, sex) can not be randomised so special care is needed to ensure comparability
Six cages of 7-9 mice of each strain: error bars are SEMs

A well designed experiment

- Absence of bias
- Experimental unit, randomisation, blinding
- High power
- Low noise (uniform material, blocking, covariance)
- High signal (sensitive subjects, high dose)
- Large sample size
- Wide range of applicability
- Replicate over other factors (e.g. sex, strain): factorial designs
- Simplicity
- Amenable to a statistical analysis

Controlling variability:Genetic Stocks of Laboratory Animals

- Outbred stocks
- e.g. Swiss mice, Wistar Rats
- Inbred strains
- e.g. BALB/c, F344
- Mutants and polymorphisms
- e.g. Foxn1nu, Foxn1ru
- Transgenic strains
- e.g. TG.AC, BigBlue

Exercise 1A

You want to test a compound to see if it will delay rejection of transplanted hearts.

The experiment involves heart grafts between a donor and recipient rat.
All rats have heart grafts (but retain the own heart)
Half receive the test compound, half receive the vehicle
The following rat strains are available: Outbred Wistar and Sprague-Dawley and inbred ACI, F344 and LEW.

Which strains will you use as donor and recipient, and why?

Exercise 1B

You know it is not acutely toxic but need to do a long-term toxicity study with control and treated rats.

A toxicologist points out that you wish to model humans who are genetically heterogeneous. He suggests that you use outbred genetically heterogeneous Sprague-Dawley rats, the strategy used by virtually all toxicologists.

Do you decide to accept or reject his advice. Give your reasons

Exercises 1A and 1B

Questions:
A: does your new drug prolong graft survival?
Heart transplant. Choose donor and recipient rats from:
Outbred: Wistar, Sprague-Dawley, Inbred: ACI, LEW, F344

B is the compound chronically toxic?
Toxicity test. Aim is to model humans. Outbred SpragueDawley rats suggested. Accept or reject this advice?

Variable results with heart transplants

Abstract

"We transplanted hearts of young ... Fishers into ... recipient Sprague-Dawleys. An outbred strain was selected since such animals are usually heartier and easier to handle...

We are puzzled by our results....palpable heart beats were evident in the saline group long after acute rejections...were expected...Results in the experimental groups varied considerably..."

Choice of outbred stocks

"..it is more correct to test on a random-bred stock on the grounds that it is more likely that at least a few individuals will respond to the administration of an active agent in a group which is genetically heterogeneous"

[^1]The problem with genetic heterogeneity A "completely randomized" design

Control	Treated
Beagle	Goat
Chicken	Pig
Mouse	Crow
Horse	Frog
Gerbil	Hamster
Guinea-pig	Quail
Lion	Beaver
Duck	Cat

A matched pairs (randomized block) design

Control	Treated
Beagle	Beagle
Mouse	Mouse
Horse	Horse
Gerbil	Gerbil
Guinea-pig	Guinea-pig
Lion	Lion
Duck	Duck
Rabbit	Rabbit

A randomized block design

Control	Treated
A/J	A/J
A2G	A2G
BALB/c	BALB/c
CBA	CBA
C3H	C3H
C57BL/6	C57BL/6
DBA/2	DBA/2
NIH	NIH

There could be more than two treatment groups

A randomised block design

Strain	Control	Treated
A/J	22.8	21.8
A2G	24.0	23.2
BALB/c	22.3	21.5

CBA $20.6 \quad 20.5$

C3H $24.0 \quad 23.9$
C57BL/6 $24.8 \quad 24.7$
$\begin{array}{lll}\text { DBA/2 } & 22.4 \quad 21.7\end{array}$
$\begin{array}{lll}\text { NIH } & 29.6 & 30.0\end{array}$

Mean $23.8 \quad 23.4$
$\begin{array}{lll}\text { SD } & 2.7 & 3.0\end{array}$
How should this be statistically analysed?

Statistical analysis

Strain	Control	Treated	Control-treated
A/J	22.8	21.8	1.0
A2G	24.0	23.2	0.8
BALB/c	22.3	21.5	0.8
CBA	20.6	20.5	0.1
C3H	24.0	23.9	0.1
C57BL/6	24.8	24.7	0.1
DBA/2	22.4	21.7	0.7
NIH	29.6	30.0	-0.4
Mean	23.8	23.4	0.4
SD	2.7	3.0	0.5

Paired t-test

One-Sample T: Difference
Test of mu=0 vs mu not $=0$

Variable	N	Mean	StDev	SE Mean		
Difference	8	0.387	0.482	0.171		
Variable	$95.0 \% \mathrm{Cl}$			T		P
Difference	$(-0.017,0.791)$	2.27	0.058			

Two-way ANOVA without interaction for a randomised block design

Analysis of Variance for Weight

Source	DF	SS	MS	F	P
Strains	7	111.717	15.960	137.18	0.000
Treatmen	1	0.599	0.599	5.15	0.058
Error	7	0.814	0.116		
Total	15	113.131			

Residual Model Diagnostics

Statistical analysis should fit the purpose of the study

A Completely Randomised Design
Experimental unit??

Lesion diameter following microwave treatment of pig liver

Power (watts)										
50	3.3	3.2	2.8	2.8	2.4	2.7	3.2	3.8	1.5	2.9
100	4.7	4.0	3.5	4.4	3.9	4.8	4.4	3.7	4.0	4.2
150	5.5	5.0	4.4	4.5	6.0	6.5	5.0	5.0		5.3
200	5.8	6.0								5.9

Lesion diameter clearly increases with power, but aim is to quantify this

Estimation versus hypothesis testing

Sample size

- Power analysis (particularly for clinical trials)
- Useful; for simple, expensive experiments
- Difficult fo complex experiments with many groups
- Need separate calculations for each character
- Requires estimate of standard deviation
- Requires estimate of effect size of scientific importance
- Resource equation (when power analysis not possible)
- Easy to use even for complex designs with many characters
- Does not require estimate of standard deviation
- Crude compared with power analysis

Sample size: Power analysis

Signal

Effect size of scientific interest (delta)

Calculation of sample size using R

> power.t.test(sig.level $=0.05$, power $=0.9$, delta $=6, \mathrm{sd}=6$)
Two-sample t test power calculation

$$
\begin{gathered}
n=22.0211 \\
\text { delta }=6 \\
s d=6 \\
\text { sig.level }=0.05 \\
\text { power }=0.9 \\
\text { alternative }=\text { two.sided }
\end{gathered}
$$

NOTE: n is number in *each* group (two-sided by default)

Group size and Signal/noise ratio

Assuming 2-sample, 2 sided t-test and 5% significance level

Comparison of two anaesthetics for dogs under clinical conditions

(Vet. Anaesthes. Analges.)
Unsexed healthy clinic dogs,

- Weight 3.8 to 42.6 kg .
- Systolic BP 141 (SD 36) mm Hg

Assume:

- a 20 mmHg difference between groups is of clinical importance, - a significance level of $\boldsymbol{\alpha = 0 . 0 5}$
- a power=90\%
- a 2-sided t-test

Signal/Noise ratio 20/36 $=0.56$
(standardised effect size)
$\delta=\left|\mu_{1}-\mu_{2}\right| / \sigma$
Required sample size 68/group

Dog example: random dogs

Command in the R statistical package. Default is 2 -sided

```
power.t.test(delta=0.56, sd=1, power=.9, sig.level=0.05)
```

Two-sample t test power calculation

$$
\begin{aligned}
& n=67.98649 \\
& \text { delta }=0.56 \\
& s d=1 \\
& \text { sig.level }=0.05 \\
& \text { power }=0.9 \\
& \text { alternative }=\text { two.sided }
\end{aligned}
$$

NOTE: n is number in *each* group

A second paper described:

- Male Beagles weight $17-23 \mathrm{~kg}$ - mean BP 108 (SD 9) mm Hg.
- Want to detect 20 mm
difference between groups (as before)
With the same assumptions as previous slide:

Signal/noise ratio $=20 / 9=2.22$

Required sample size 6/group

Type of dog	SDev	Signal/noise	Sample size/gp(1)	\%Power ($\mathrm{n}=8$)
Random dogs	36	0.56	$\underline{(2)}$	
Male beagles	9	2.22	6	18
			98	
(1) Sample size: 90% power				
(2) Power, Sample size 8/group				
Assumes $\alpha=5 \%$, 2-sided t-test and effect size 20 mmHg				

Hexobarbital Sleeping time in mice: inbreds are more uniform and strains differ

| Strain | "N" Mean | | SD | | Signal/noise | Needed* |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | Power**

Mean of SDs: inbreds $=3.2$, outbreds $=13.5, p=<0.001$

* Power analysis: number needed in a two-sample t-test to detect a 4 min. change in the mean (2-sided) with $\alpha=0.05$ and a power of 90%
${ }^{* *}$ power of an experiment to detect a 4 min. change in the mean if the sample size is fixed at 20 mice/group

Data from Jay 1955 Proc Soc. Exp Biol Med 90:378

NB. This is based on differences in the SDs. Strains will also differ in

The resource equation

A power analysis is not always possible.

1. If lots of characters
2. No estimate of the standard deviation,
3. Impossible to specify an effect size of scientific importance
4. Complex designs

So use the Resource Equation method. (Law of diminishing returns)

$\mathrm{E}=$ (Total number of experimental units)-(number of treatment groups)
E should be between 10 and 20

The randomised block design: for controlling noise and splitting up the experiment

Treaments A, B \& C, within a block subjects are matched

$$
E=15-3=12
$$

B1 Blocking

- Randomisation is within-block
- Multiple differences between blocks

Use when:

- Heterogeneous age/weight
- Different shelves/rooms
- Natural structure (litters)
- Experiment split in time

A randomised block experiment

Randomised BlocK ANOVA

| Correct | 2-way Analysis of Variance | for Apop | | | |
| :--- | :--- | ---: | ---: | ---: | :---: | :---: |
| | | | | | P |
| Source | DF | SS | MS | F | P |
| Block | 2 | 21764 | 10882 | 114.82 | 0.000 |
| Treat | 2 | 2129 | 1064 | 11.23 | 0.023 |
| Error | 4 | 379 | 94 | | |
| Total | 8 | 24272 | | | Variance |

Post-hoc comparisons required to indicate which means differ.

A well designed experiment

- Absence of bias
- Experimental unit, randomisation, blinding
- High power
- Low noise (uniform material, blocking, covariance)
- High signal (sensitive subjects, high dose)
- Large sample size
- Wide range of applicability
- Replicate over other factors (e.g. sex, strain): factorial designs
- Simplicity
- Amenable to a statistical analysis

Factorial designs

$\mathbf{2 x 2}$ Factorial design Single factor design One variable at a time (OVAT)

Factorial designs

(By using a factorial design)".... an experimental investigation, at the same time as it is made more comprehensive, may also be made more efficient if by more efficient we mean that more knowledge and a higher degree of precision are obtainable by the same number of observations."
R.A. Fisher, 1960

Effect of chloramphenicol on RBC counts ($2000 \mu \mathrm{~g} / \mathrm{kg}$)

Strain Control Treated Strain means

Want to know:

1. Does treatment have an effect on RBC counts

BALB/c
10.10
8.95
$10.08 \quad 8.45$
$9.73 \quad 8.68$
$10.09 \quad 8.89$
9.37
2. Do strains differ in RBC counts

C57BL
$9.60 \quad 8.82$
9.56
8.24
$9.14 \quad 8.18$
3. Do strains differ in their response (interaction)
9.20
8.10
8.86

Treat. $\begin{array}{lll}\text { Mean } & 9.69 & 8.54\end{array}$

No interaction

Interaction

Factorial designs

- Very common in biomedical research
- Often incorrectly analysed
- Can have any number of factors and any number of levels of each factor
- 2^{n} designs can be used to study many factors simultaneously

Factorial designs are often incorrectly analysed

Number of studies
513
Factorial designs
153 (30\%)
Number analysed correctly 78 (50\%)

Niewenhuis et al (2011) Nature Neurosci. 14:1105

A factorial experiment

Could garlic (diallyl sulphide, DS) help to prevent cancer?

- 0
- 0

A/J mice (male)
DS* Vehicle Control
Urethane Urethane**

*By gavage $0.2 \mathrm{mg} / \mathrm{g}$ body wt. for 3 days prior to and 3 days following carcinogen treatment ** $1 \mathrm{mg} / \mathrm{g}$ by i.p. injection

A possible design

A/J male mice	
Vehicle +Urethane	DS + Urethane
10	10

Resource equation
$\mathrm{E}=20-2=18$

Power analysis:
A/J mice get about 20 tumors/mouse with a SD of 6 tumors.
10 mice/group should have about an 85% chance of detecting a 1.4
SD decline (8.4 tumors) with a 5% significance level.

Add females: a $\mathbf{2}^{2}$ factorial

	Vehicle + Urethane	DS + Urethane
A/J males	5	5
A/J females	5	5

$$
E=20-4=16
$$

Plus two carcinogens: a 2^{3} factorial

	Vehicle + Urethane	Vehicle + $3 M C$	DS + Urethane	DS + $3 M C$
A/J males	3	3	3	3
A/J females	3	3	3	3

$$
E=24-8=16
$$

Add another strain: a $\mathbf{2}^{4}$ factorial

	Vehicle + Urethane	Vehicle + $3 M C$	DS + Urethane	DS + $3 M C$
A/J males	2	2	2	2
A/J females	2	2	2	2
NIH males	2	2	2	2
NIH females	2	2	2	2

$E=32-16=16$. Note each main effect has 16 animals/group

Statistical analysis

Data to be analysed as a 2^{4} factorial design using an analysis of variance.

Tumuor counts tend to have a poisson distribution so counts transformed to a square root.

We need to look at assumptions for parametric tests, and for outliers

Data into computer one row per subject

Strain	antiox	inhib	carc	root
1	1	1	1	3.31662
1	1	1	1	3.74166
1	1	1	1	3.74166
1	1	1	2	4.89898
1	1	1	2	4.79583
1	1	1	2	5.74456
1	1	2	1	2.82843
1	1	2	1	3.87298
1	1	2	1	2.64575
1	1	2	2	3.74166
1	1	2	2	4.12311
1	1	2	2	3.74166

Etc, etc

Factor	Type	Levels	Values
Strains	fixed	2	A, N
Sexes	fixed	2	F, M
Carcs	fixed	2	$3 M C$, Urethane
Antioxs	fixed	2	No, Yes

X becomes significant if outliers removed

Residual Plots for roottum

Histogram of the Residuals

Residuals Versus the Fitted Values

Residuals Versus the Order of the Data

Main effects

Two-way interactions

Conclusions: A factorial exploratory experiment

- As four separate experiments
- $4 \times 20=80$ mice
- Each comparison 10 versus 10
- No estimates of interactions
- As a 2^{4} factorial
- 32 mice used
- Each main effect is 16 vs 16 mice
- All interactions estimated
- Some interactions important

Conclusions

- Well designed experiments save time, money and animals and improve the quality of the research
- To avoid bias
- Identify correctly the experimental unit.
- Assign these to treatments at random and measurements should be done in random order
- Where possible investigators should be "blinded" using coded samples
- To maximise power (chance of detecting an effect)
- Controlling all possible sources of variation, including genetic variation (using inbred strains)
- Use randomised block designs to control time and space variation and split experiments into more manageable parts
- Choose sensitive subjects (use factorial designs to find them)
- Use an objective method of determining sample size (power analysis or resource equation)
- Explore the range of applicability using factorial designs (more information per experimental unit)
- "Gold Standard" and "ARRIVE" guidelines. Provide a checklist of what should be in your manuscript.

Factorial designs \& group size

[^0]: Kilkenny C, Parsons N, Kadyszewski E, Festing MF, Cuthill IC, Fry D, Hutton J, Altman DG. Survey of the quality of experimental design, statistical analysis and reporting of research using animals. PLoS. One. 2009; 4: e7824.

[^1]: Arcos JC, Argus MF, Wolf G, eds. (1968) Chemical induction of cancer. 491pp, London, Academic Press.

