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Birth and death processes

Gene expression

Figure:
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Birth and death processes

Steady state

Figure:
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Birth and death processes

Figure: Grey bars: OFF; Dark bars: ON
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Birth and death processes

A simple model of gene expression

Figure:
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Birth and death processes

Transition rates

The process should be such that

P(N(t + h) = n + 1|N(t) = n)≈ µh, h→ 0,

P(X(t + h) = n−1|X(t) = n)≈ νnh, h→ 0,

r r r -

n

µνn

n−1 n + 1

� r r
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Birth and death processes

Data defining general birth and death processes

q q q -

i

λiνi

i−1 i + 1
� q q

Figure: Nearest neighbours transitions for birth and death processes

P(X(t + h) = i + 1|X(t) = i)≈ λih, h→ 0,

P(X(t + h) = i−1|X(t) = i)≈ νih, h→ 0.

Comput. biol. group (Fribourg) Time-continuous Markov chains and chemical reaction networks SCNAT/Rigi 2015 11 / 58



Birth and death processes

Simulation of general birth and death processes

New parameters

a sequence of probabilities (pi)i∈N, pi (resp. qi ) is the probability to jump
to i + 1 (resp. to i−1)

a sequence of positive real numbers (ai)i∈N

which are such that

λi =
pi

ai
, νi =

qi

ai
, pi + qi = 1,

λi + νi =
1
ai
, pi =

λi

λi + νi
, qi =

νi

λi + νi
;
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Birth and death processes

Simulation: Gillespie Algorithm

6

-
Time t ≥ 0

j = i−1

i0 = i

τ0 = 0

qi

τ1

pi−1

τ2

Λ = N

Exp(a−1
i0 )

Exp(a−1
j )

Exp(a−1
i )

Figure: The Markov chain starts with X(0) = i0. It waits there an exponential time of
parameter a−1

i0 , and then jumps at time τ1 to the new state j = i0−1 with probability
qi0 , so that X(τ1) = j .
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Birth and death processes

Master equation

Pij(t) = P(X(t) = j|X(0) = i).

Assume that infi ai > 0. Then the transition probabilities satisfy the Kolmogorov
equation

dPij(t)
dt

= λj−1Pij−1(t) + νj+1Pij+1(t)− (λj + νj)Pij(t). (1)

r r r -

j

λjνj

j−1 j + 1

� r r

Figure: Nearest neighbours transitions for birth and death processes
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Birth and death processes

Steady state

Natural question: what is the probability that {X(t) = j} when t is large ?

dPij(t)
dt

= λj−1Pij−1(t) + νj+1Pij+1(t)− (λj + νj)Pij(t). (2)

One sets dPij (t)
dt = 0 to get the linear equation

0 = λj−1πj−1 + νj+1πj+1− (λj + νj)πj , (3)

where, under mild conditions like supi(νi + λi) < +∞,

πj = lim
t→∞

P(X(t) = j|X(0) = i).
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Birth and death processes

Substrates and enzymes

Figure: Transitions associated with the reactions S + E
κ+←→
κ−

SE

Let X(t) = x : the number of ways of creating a new complex is given by
(m− x)(NE − x). The rate of production of such complexes is hence
(m− x)(NE − x)κ+. On the other hand, each of the x complexes has a
probability of dissociating during small time intervals, so that the rate of
dissociation is κ−x .
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Birth and death processes

Let
K =

κ+

κ−
.

This is a birth and death process of rates given by

λx = κ+(m− x)(NE − x) and νx = κ−x .

The related master equation describing the time evolution of the probability
Px (t) = P(X(t) = x) is

dPx+1(t)
dt

= (m− x)(NE − x)κ+Px (t) + κ−(x + 2)Px+2(t)

−(κ−(x + 1) + κ+(m− (x + 1))(NE − (x + 1)))Px+1(t).
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Birth and death processes

λx = κ+(m− x)(NE − x) and νx = κ−x .

A direct computation shows that the related steady state is

π(x) = Px (∞) =
m!NE !K x

x!(m− x)!(NE − x)!

1
Zm,NE

, (4)

for a normalization constant

Zm,NE = ∑
x≥0

m!NE !K x

x!(m− x)!(NE − x)!
.
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Markov chains and chemical reaction networks

Metabolic networks

Figure: (a) Linear biosynthesis pathway: Tryptophan pathway in E. Coli. (b): linear
chain of enzymatic reactions with a negative feedback loop from end product to
chorismate.
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Markov chains and chemical reaction networks

Metabolic networks

Figure: Markov chain X(t) = (X1(t), · · · ,Xn(t)) describing the metabolic dynamics
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Markov chains and chemical reaction networks

Gene network

Figure: Markov chain X(t) = (X1(t), · · · ,Xn(t)) giving the abundances of the various
protein species
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Markov chains and chemical reaction networks

E Coli network

Figure: Markov chain X(t) = (X1(t), · · · ,Xn(t)) giving the abundances of the various
protein species. Here the logical gates associated with flagella formation in E Coli
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Markov chains and chemical reaction networks

General Markov chains

X(t) ∈ Λ

is defined using transition rates qxy ≥ 0, x , y ∈ Λ, which are encoded in a
generator matrix

Q : Λ x Λ−→ R, Q = {qxy , x , y ∈ Λ},

such that
qxx =−∑

y 6=x

qxy and ∑
y∈Λ

qxy ≡ 0. (5)

P(X(t + h) = y |X(t) = x)≈ qxy h, (6)

as h ≈ 0
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Markov chains and chemical reaction networks

Kolmogorov equation

The transition function

Pxy (t) = P(X(t) = y |X(0) = x)

solves the master equation

dPxy (t)
dt

= ∑
z 6=y

(
Pxz(t)qzy −Pxy (t)qyz

)
. (7)
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Markov chains and chemical reaction networks

Let
P(t) = (Pxy (t))x ,y∈Λ.

Then
dP(t)

dt
= P(t)Q, P(0) = id.

The limiting behaviour of P(t) is obtained by stationary probability measures π

solving the linear equation
πQ = 0.
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Markov chains and chemical reaction networks

Convergence to steady state

Theorem[Convergence to steady state] Let Q be an irreducible generator
defined on the countable set Λ, of unique invariant probability measure π.
Assume that supx ∑z 6=x qxz < +∞. Then

Pxy (t) = P(X(t) = y |X(0) = x)−→ π(y), t → ∞. (8)
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Markov chains and chemical reaction networks Examples from systems biology and biochemistry

Substate-Enzyme-Product

To model metabolic pathways, one needs reaction involving biochemical
reactions like

/0
µ−→Si, Si + Ei

κi
+←→

κi
−

SEi
κ

ij
2−→Sj. (9)

Markov chain X(t) where

X(t) = (X1(t), · · · ,Xn(t)),

where Xi(t) gives the number of substrate molecules of type Si at time t .
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Markov chains and chemical reaction networks Examples from systems biology and biochemistry

Metabolic networks

Figure: Directed graph associated with a metabolic pathway
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Markov chains and chemical reaction networks Examples from systems biology and biochemistry

Metabolic networks

Figure: A substrate molecule of type i is being transformed into a type j substrate
molecule

The actual knowledge on such stochastic processes is very limited at present
time.
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Markov chains and chemical reaction networks Examples from systems biology and biochemistry

Let ei denote the i th unit vector of RM , that is, the vector having all components
equal to 0 except the i th one, which is equal to 1. The transitions of the particle
system are of the form

(x → x−ei + ej) when (Si → Sj) ∈ E ,

meaning that a particle of species Si has been converted into a molecule of
type Sj , at rate

qx ,x−ei +ej = κjiνxi ,

where
νx = κ2

x
x + (K −NE −1)

, (10)

which is the so-called Michaelis Menten law.
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Markov chains and chemical reaction networks Examples from systems biology and biochemistry

It turns out that, for certain graph structures, the steady state limiting
distribution of this particle system factorizes as

lim
t→∞

P(X1(t) = x1, · · · ,Xn(t) = xn) = π(x1, · · · ,xn)

= π1(x1) · · ·πn(xn),

where the marginal laws are of the form (for Michaelis Menten kinetics)

π(m) =

(
m + K + NE −1

m

)
(1− z)K +NE m, (11)

where z = µ/νmax.
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Markov chains and chemical reaction networks Examples from systems biology and biochemistry

Factorization implies independence: the random fluctuations of the
abundance of some species do not influence the other species

The marginal distribution of Si only depends on enzyme Ei : this allows
regulation of species Si by fine tuning the related enzyme

Perhaps the effect of evolution to adapt to fluctuating environments

Information on the metabolic network can’t be obtained from steady state
data
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Signalling pathways

Signalling cascades

Figure: A sequential signalling cascade
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Signalling pathways

Figure: Signalling cascade
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Signalling pathways

Biochemical signal processing

An input signal R(t) arrives at the cell membrane (pheromone, growth factors,
chemical agent...) This information will be transduced or sent toward
transcription factors (TF), which will induce the expression of some
target genes in response to this signal.

Usually, the signal concentration is weak. Nature found a way of
amplifying this input in order to activate properly TF

This amplification is realized using kinases

These kinases switch randomly between active and silent states

Active protein kinases induce the activation of other kinases

Complex graph structures
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Signalling pathways

Biochemical signal processing

Main research questions

Amplification

Speed of transmission

Crosstalk between antennas, interferences

Noise filtering
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Problem Session

Exercises
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Problem Session Framework 1: Signalling pathways

A stochastic model

The first kinase is activated by some external signal R(t), t ≥ 0. Let Y1(t) be a
Bernoulli random variable describing the activity of the first kinase at time t ,
with Y1(t) = 1 when it is active, or phosphorylated, and Y1(t) = 0 otherwise.
The related dynamic might be described by a time non-homogeneous two-state
Markov chain. The transition rate from the OFF state to the ON state is
proportional to the signal amplitude, of the form α̃1R(t). The reverse transition
is described by a constant rate β1. This reaction is then modelled by the
relation

O1
0

α̃1R(t)←→
β1

O1
1 . (12)
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Problem Session Framework 1: Signalling pathways

Figure: The signalling cascade. The phosphorylation rate of the first kinase depends
on the external signal R(t). O i

0 denotes the OFF state, and O i
1 the ON state.
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Problem Session Framework 1: Signalling pathways

Chemical reactions/Markov chain

The state of the system at time t is described by the random binary vector
Y (t) = (Y1(t), · · · ,YM(t)). Let Ei(t) = E(Yi(t)) = P(Yi(t) = 1). The related
master equation yields that

dEi(t)
dt

= α̃iE((1−Yi(t))Yi−1(t))−βiEi(t),

when i ≥ 2. Due to statistical correlations,

E((1−Yi(t))Yi−1(t)) 6= E((1−Yi(t)))E(Yi−1(t)) = (1−Ei(t))Ei−1(t),

in general. If these random variables are not correlated, one obtains the o.d.e.

dEi(t)
dt

= α̃i(1−Ei(t))Ei−1(t)−βiEi(t).
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Problem Session Framework 1: Signalling pathways

Simplified model

Heinrich, Neel and Rapoport(2002) proposed to study this last o.d.e., using
variables Xi(t), describing kinase abundances: let Ci denote the total number
of type i kinases, which can be active or not. Their model is given by the set of
differential equations

dX1(t)
dt

= α̃1R(t)(C1−X1(t))−β1X1(t),

dXi(t)
dt

= α̃iXi−1(t)(Ci −Xi(t))−βiXi(t), i ≥ 2.
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Problem Session Framework 1: Signalling pathways

The signalling time τi is defined to be the average time needed to activate a
kinase of type i .

fi(t) =
Xi(t)∫

∞

0 Xi(s)ds
, t > 0.

Figure: Density fi (t) associated with the i th kinase
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Problem Session Framework 1: Signalling pathways

Let Ti > 0 be a random variable of density fi . The signalling time τi is the
expected value of Ti

τi = E(Ti) =
∫

∞

0
tfi(t)dt.

The signal duration is the related standard deviation

σi =
√

Var(Ti) =
√

E(T 2
i )− (E(Ti))2.

The signal amplitude Ai ,

Ai =

∫
∞

0 Xi(s)ds
2σi

,

which is the height of a rectangle of length 2σi of area li =
∫

∞

0 Xi(s)ds.
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Problem Session Framework 1: Signalling pathways

Figure: Signal amplitude
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Problem Session Framework 1: Signalling pathways

Weakly activated pathways

Assume that Xi(t)/Ci ≈ 0 and Xi(0) = 0, ∀i , and that R(t) = R(0)exp(−λt),
λ > 0, Heinrich et al. have proven that

τM =
1
λ

+
M

∑
i=1

1
βi
, (13)

which does not depend on the phosphorylation rate αi . Moreover, all the
phosphatases have the same effect on the signalling time, regardless of their
position in the pathway. They also observed the same phenomenon for the
signal duration,

σM =

√
1
λ2 +

M

∑
i=1

1
β2

i
. (14)
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Problem Session Framework 1: Signalling pathways

In contrast, the signal amplitude depends on all the pathway parameters

AM =
R(0)∏

M
i=1

αi
βi

2
√

1 + λ2 ∑
M
i=1

1
β2

i

, (15)

where we set
αi = Ci α̃i .

The signal can be amplified, that is, Ai−1 < Ai when

βi < αi

√
1− 1

α2
i σ2

i−1
,

so that there is some amplification when the dephosphorylation rate βi is small
relative to αi .
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Problem Session Framework 1: Signalling pathways

Optimal cascade length

Given some amplification level, there is an optimal cascade length that
minimizes signalling time:

Figure: Parameters are chosen to achieve a given amplification level. Long cascades
can lead to fast signal transmission
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Problem Session Framework 1: Signalling pathways

Exercise 1

The differential system associated with weakly activated linear activation
cascades is

dX1(t)
dt

= α1R(t)−β1X1(t),

dXi(t)
dt

= αiXi−1(t)−βiXi(t), i ≥ 2,

where we assume that all the kinases are inactive at time t = 0, that is, we set
Xi(0) = 0, ∀i . Consider an exponentially decreasing input signal
R(t) = R(0)exp(−λt), R(0) > 0, for some parameter λ > 0, which is such
that λ 6= βi , ∀i .

Use the method of variation of constants to deduce that

X1(t) = α1R(0)
e−λt −e−β1t

β1−λ
−→ 0,

exponentially fast as t → ∞.
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Problem Session Framework 1: Signalling pathways

Exercise 1

Consider the density function fi on R+,

fi(t) =
Xi(t)

Zi
,

where
Zi =

∫
∞

0
Xi(s)ds.

Show that
Zi =

αi

βi
Zi−1, i ≥ 1.

Deduce from this that

Zi =
R(0)

λ

i

∏
k=1

αk

βk
.

Use the definition of fi to show that the signalling times τi satisfy the
recursion

τi = τi−1 +
1
βi
,

and deduce (13).
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Problem Session Framework 2: Birth and death processes

Exercise 2: Steady state of birth and death processes

Consider a birth and death processes of parameters λj and νj which starts
within the interval Λ = {0, · · · ,M}. Assume that

λj = 0, j ≥M and that ν0 = 0, νj > 0, 1≤ j ≤M.

Show that the process will stay in Λ forever.

Show that the steady state distribution πj , 0≤ j ≤M which solves (3) is
given by

πj =
∏

j−1
i=0 λi ∏

M
i=j+1 νi

∑
M
j=0 ∏

j−1
i=0 λi ∏

M
i=j+1 νi

.
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Problem Session Framework 2: Birth and death processes

In the special case where λj ≡ µ and νj ≡ νj , show that the steady state is

πj =

λj

j!

∑
M
j=0

λj

j!

,

where λ = µ/ν.

Deduce from this that π is a Poisson distribution of parameter λ when
M→ ∞ (see Exercise 4 for a verification through simulations).
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Problem Session Framework 3: The Gillespie Algorithm

The Gillespie algorithm

For a general Markov chain X(t) of generator Q = (qxy )

P(X(t + h) = y |X(t) = x)≈ qxy h.

The Gillespie Algorithm uses Q to simulate the random trajectories of X(t) .
One defines the jump matrix P = (pxy )x ,y∈Λ associated with the generator Q is
the (stochastic) matrix defined by

pxy =
qxy

∑z 6=x qxz
when x 6= y and ∑

z 6=x

qxz > 0.

Let also
q(x) = ∑

y 6=x

qxy =−qxx .
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Problem Session Framework 3: The Gillespie Algorithm

6

-
Time t ≥ 0

x

x0

τ0 = 0 τ1 τ2

y

Λ

Exp(q(x0))

Exp(q(x))

Exp(q(y))

Figure: The Markov chain starts with X(0) = x0. It waits there an exponential time of
parameter q(x0), and then jumps with probability px0x at time τ1 to the new state x , so
that X(τ1) = x . It then waits an exponential time of parameter q(x) to jump to the new
state y , with X(τ2) = y with probability pxy
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Problem Session Framework 3: The Gillespie Algorithm

Exercise 3: The first reaction method

Prove the following result:

Theorem: Let Tk be independent exponential random variables of parameters
qk , such that q = ∑k qk < ∞ and q > 0. Let

T = inf
k

Tk .

The above infimum is attained at a unique index k∗ with probability 1. T and k∗
are independent and

T is exponential of parameter q,

and P(k∗ = k) = qk
q .
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Problem Session Framework 3: The Gillespie Algorithm

Exercise 3: The first reaction method

Given that the process arrives at x at time τ, the process stays an
exponential time of parameter q(x) at x , and then jumps to a new state y
with probability pxy = qxy/q(x), where q(x) = ∑z 6=x qxz .

Use the Theorem to check that the above procedure is equivalent to, setting
qk = qxz and q = q(x),

Draw independent exponential random variables Txz of parameter qxz

Look for the index z∗ such that Txz∗ = infz Txz ,

Set the waiting time at x as Txz∗ ,

and let the process jump from x to z∗.
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Problem Session Framework 3: The Gillespie Algorithm

Exercise 4: Gene expression

Consider the following set of chemical reactions (or transitions)

/0
µ−→A, (16)

which corresponds to the creation of a molecule of type A, and, for degradation,

A
νn−→ /0. (17)

when the system contains n molecules of type A. Let X(t) be the number of
type A molecules at time t . Assume that the process arrives at x = n at time τ.
The possible transitions are (see Exercise 2)

n→ n + 1 at rate qnn+1 = µ,

and n→ n−1 at rate qnn−1 = νn.
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Problem Session Framework 3: The Gillespie Algorithm

Exercise 4: Gene expression

Check that the Gillespie algorithm is equivalent to the following pseudo-code:

Generate two random numbers r1 and r2 uniformly in the unit interval
[0,1].

Set q(x) = xν + µ.

Stay at x the random time4, where

4=
1

q(x)
ln(

1
r1

).

Jump then according to the following rule:

X(t +4) =

{
X(t) + 1 when r2 <

µ
q(x) ,

X(t)−1 when r2 >
µ

q(x) .

Implement this pseudo-code and check through simulations that the steady
state distribution is Poisson of parameter µ/ν.

Comput. biol. group (Fribourg) Time-continuous Markov chains and chemical reaction networks SCNAT/Rigi 2015 57 / 58



Problem Session Framework 3: The Gillespie Algorithm

Exercise 5: Second order reactions

Consider a system composed of type A and type B molecules, and let us
denote by XA(t) and XB(t) the number of these molecules present in the
system at time t . The set of chemical reactions is

A + A
κ1XA(XA−1)−→ /0,

A + B
κ2XAXB−→ /0,

/0
κ3−→A,

/0
κ4−→B.

Set
α1 = κ1XA(XA−1), α2 = κ2XAXB, α3 = κ3, α4 = κ4.
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Problem Session Framework 3: The Gillespie Algorithm

Exercise 5: Second order reactions

Check that the Gillespie algorithm for this set of reactions is equivalent to the
following pseudo-code:

Generate two random numbers r1 and r2 uniformly in the unit interval
[0,1].
Set α0 = α1 + α2 + α3 + α4 = q(X), where X(t) = (XA,XB).
Stay at X the random time4, where

4=
1

q(x)
ln(

1
r1

).

Jump then according to the following rule:

X(t +4) =


(XA−2,XB) when 0 < r2 <

α1
α0
,

(XA−1,XB−1) when α1
α0

< r2 <
α1+α2

α0
,

(XA + 1,XB) when α1+α2
α0

< r2 <
α1+α2+α3

α0
,

(XA,XB + 1) when r2 >
α1+α2+α3

α0
.
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