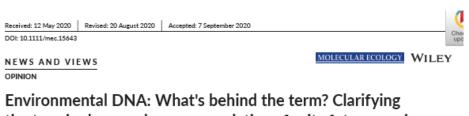
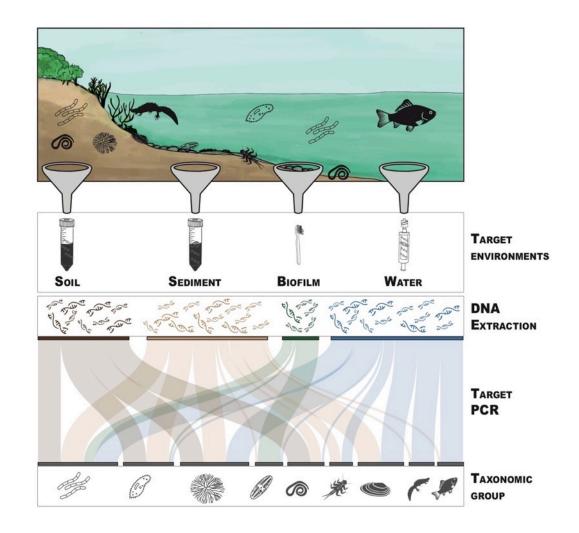
Monitoring biodiversity using environmental DNA: the future is already here.

Kristina Cermakova & Jan Pawlowski, Geneva

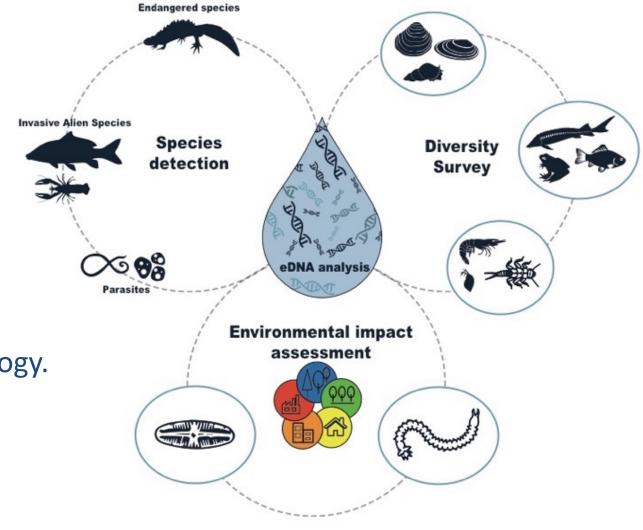
ID-GENE ecodiagnostics


Research Symposium SNP+ in Zernez, June 2, 2023

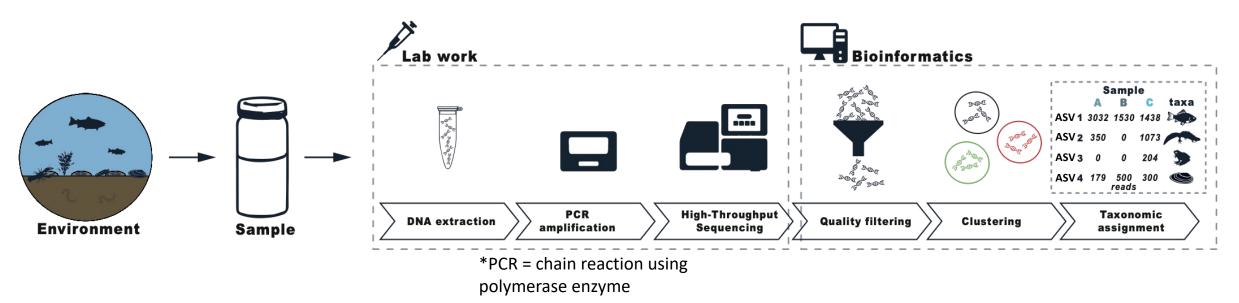


Environmental DNA (eDNA)

All the **genetic material (DNA)** from living organisms or their traces (skin cells, mucus, scales, urine, feces, saliva, gametes or decomposing bodies) present in the environment (water, soil, biofilm, etc.)



the terminology and recommendations for its future use in biomonitoring


eDNA applications

- Species detection and identification
- Biomonitoring and biodiversity survey
- Environmental impact assessment (biotic indices)

Metabarcoding approach uses high-throughput sequencing technology.

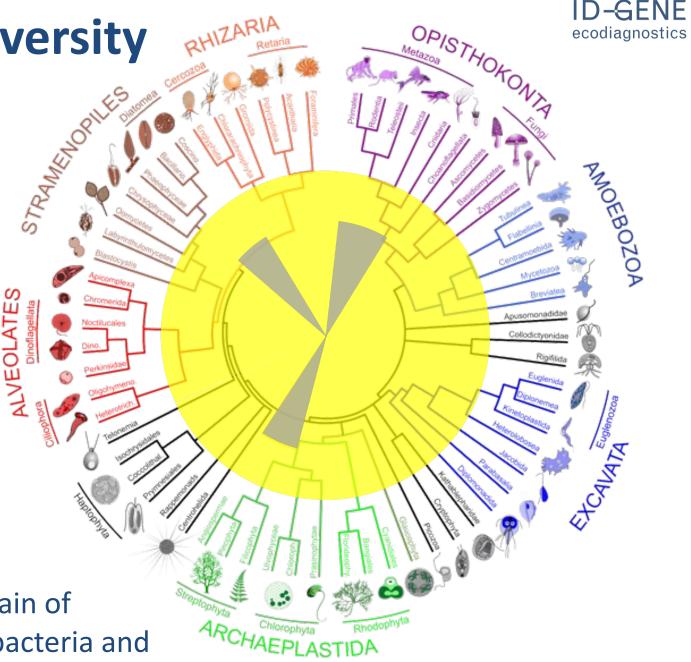
Metabarcoding workflow

Pre- and post-amplification laboratory analyses are conducted in separated rooms.

Extraction

Post-PCR

Sequencing

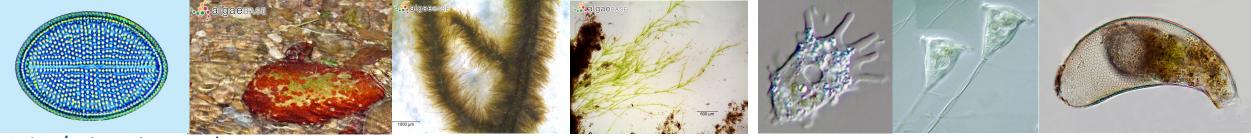

Holistic approach to biodiversity

The same environmental sample allows to study eDNA of all the organisms of the Tree of life, from bacteria to animals

> groups studied with the Biology module of the Swiss system for analysing watercourses

groups studied with the eDNA approach

Tree of life of the domain of eukaryotes (domains bacteria and archea are not represented)



Holistic biodiversity inventories

Algae

Protists

Meio-/micro-invertebrates

Macro-invertebrates

Vertebrates

Fish community survey

Species	Common name	Status CH	Drize	Aire	Allondon	Vengeron	Versoix	Seymaz
Salmo labrax	Black Sea salmon	Critically Endangered	Х		Х		Х	Х
Thymallus thymallus	European grayling	Endangered			Х		Х	
Alburnoides bipunctatus	Spirlin	Vulnerable	Х					Х
Telestes souffia	Souffia	Vulnerable						Х
Barbatula barbatula	Stone loach	Near Threatened		Х	Х		Х	Х
Barbus barbus	Common barbel	Near Threatened			Х		Х	Х
Cottus gobio	European bullhead	Near Threatened			Х		Х	
Salmo trutta/trutta fario	Brown trout	Near Threatened	Х	Х	Х		Х	Х
Esox lucius	Northern pike	Least Concern					Х	
Gobio gobio	Gudgeon	Least Concern		Х	Х		Х	Х
Perca fluviatilis	European perch	Least Concern	Х				Х	Х
Phoxinus phoxinus	Common minnow	Least Concern	Х	Х	Х	Х	Х	Х
Rutilus rutilus	Common roach	Least Concern	Х	Х	Х		Х	Х
Squalius cephalus	European chub	Least Concern	Х	Х	Х		Х	Х
Tinca tinca	Tench	Least Concern						Х
Ameiurus nebulosus/melas	Brown/Black bullhead	Introduced	Х				Х	Х
Gasterosteus aculeatus	Three-spined stickleback	Introduced					Х	
Lepomis gibbosus	Pumpkinseed	Introduced	Х				Х	Х
Oncorhynchus mykiss	Rainbow trout	Introduced	Х	Х			Х	

Congruence of eDNA and conventional inventories:

	eDNA (2022)
Vengeron	1 species
Seymaz	13 species

conventional method 0 species in 2021 13 species in 2019

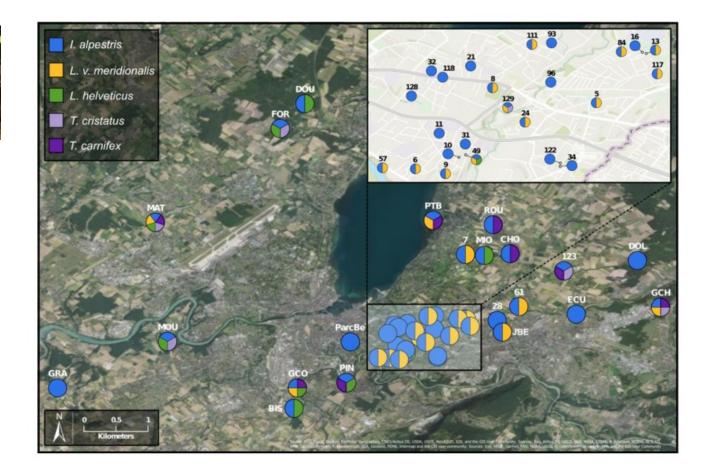
Photos: species.infofauna.ch et sfv-fsp.ch

Protected species survey

Metabarcoding allows to detect all species of newts in Switzerland.

Lissotriton helveticus

Lissotriton vulgaris

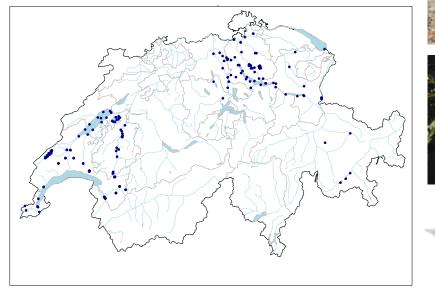

Ichthyosaura alpestris

cristatus/carnifex

Monitoring newt communities in urban area using eDNA metabarcoding

Léo Charvoz¹, Laure Apothéloz-Perret-Gentil^{1,2}, Emanuela Reo¹, Jacques Thiébaud³ and Jan Pawlowski^{1,2,4}

Invasive species detection



Invasive species monitoring

is recommended by Swiss Federal Office for the Environment and conducted by the cantons.

ID-Gene projects:

- Canton Vaud
- Canton Zürich
- Canton St. Gall
- Canton Argovie
- Canton Grisons
- Canton Geneva

Dreissena bugensis

Corbicula fluminea

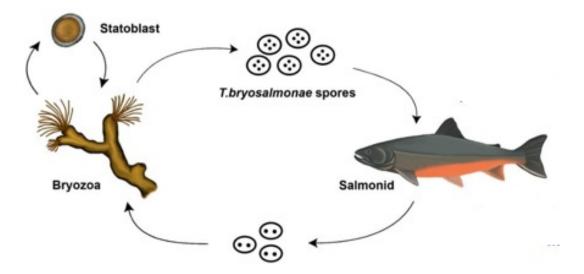
Neogobius melanostomus

Ponticola kessleri

Dikerogammarus villosus

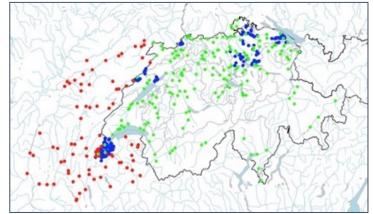
Crangonyx pseudogracilis

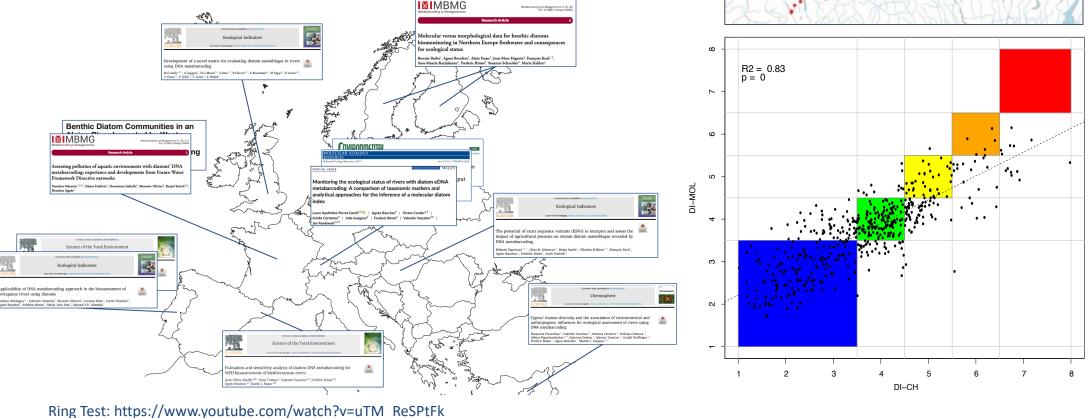
Physella acuta


Pacifastacus leniusculus

Pathogen detection in water samples

Crayfish pathogens:


- Oomycete Aphanomyces astaci causing the Crayfish plague
- Fish pathogens:
- Oomycete Saprolegnia parasitica causing saprolegniasis
- Cnidarian *Tetracapsuloides bryosalmonae* causing the Proliferative kidney disease (PKD)



Diatom Molecular Index

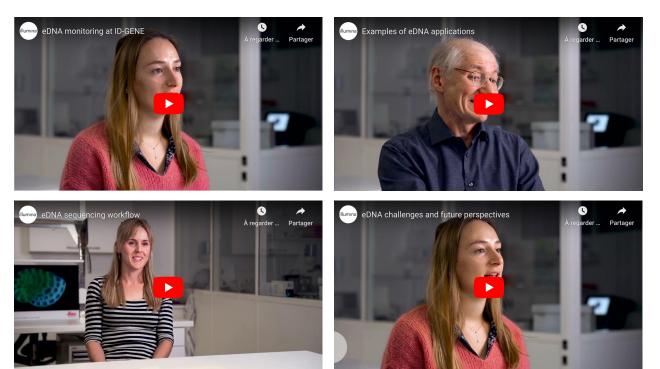
DNA-based diatom molecular index has been successfully developed in Switzerland and other European countries showing excellent correlation between molecular and morphological data.

Guidelines

Environmental DNA applications in biomonitoring and bioassessment of aquatic ecosystems

Authors:

Jan Pawlowski, Laure Apothéloz-Perret-Gentil (UniGE/ID-Gene), Elvira Mächler, Florian Altermatt (EAWAG/UniZH)


Advisory group:

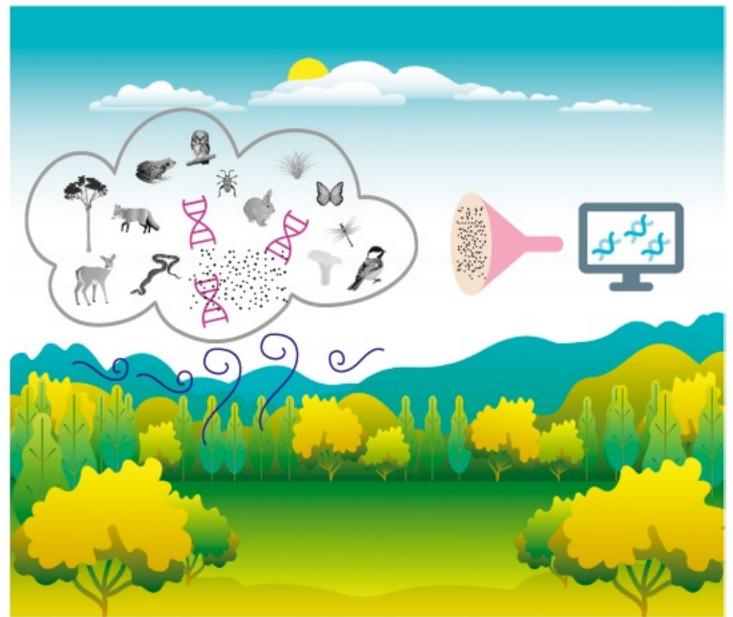
Renevier Marie-Sophie (BAFU), Yael Schindler Wildhaber (BAFU), Daniel Hefti (BAFU), Glen Litsios (BAFU), Philipp Staufer (SO), Lukas De Ventura (AG), Christiane Ilg (VSA), Vera Leib (SG), Patrick Steinmann (ZH), Arielle Cordonnier (GE/OCEAU)

ecodiagnostics <u>https://ilmnmkt.illumina.com/2016011140</u>

ID-GENE

- What is environmental DNA, or eDNA?
- How is eDNA analysis applied for biomonitoring of aquatic ecosystems?
- What are the steps of the eDNA sequencing workflow, from field to lab?
- What are the current challenges and future directions for a wider implementation of eDNA sequencing in routine environmental monitoring?

ID-GENE ecodiagnostics


Perspectives

- Airborne eDNA

measuring biodiversity from DNA in the air

Pilot studies:

- Vertebrates (Lynggaard et al. 2022)
- Insects (Pumkaeo et al. 2021, Roger et al. 2022)
- Plants (Johnson et al. 2021)
- Microbes (de Groot et al. 2021, Gusareva et al. 2022)

Bohmann & Lynggaard 2022

Trends in Ecology & Evolution

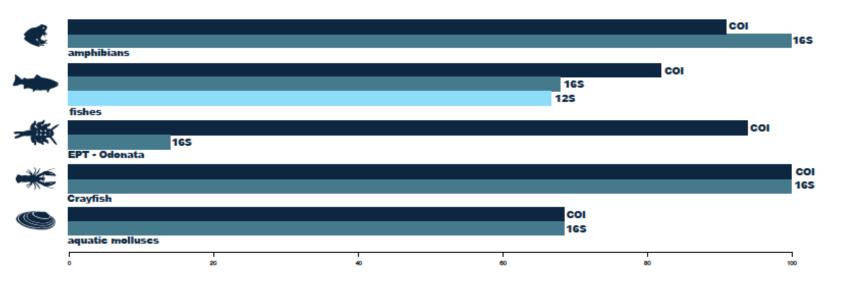
Challenges and limitations

Completing barcoding reference databases

Swiss Barcode of Life

A genetic inventory of Swiss biodiversity

eDNA does not allow:


Inferring species abundance

ID-GENE ecodiagnostics

Detecting changes of any morphological features

Evaluating physiological state (population age)

Detecting hybridization

Advantages of eDNA

Easy and non-invasive sample collecting without toxic fixative substances

Processing in batches using standardized protocols and automated processes – volume, reproducibility

Fast pipeline - results within few weeks

Conclusion

Metabarcoding approach allows processing of higher numbers of samples and thus allows better coverage and higher frequency of monitorings compared to morphological analysis.

Whole biodiversity from bacteria to animals can be assessed simultaneously from a sample.

> Metabarcoding is a robust ready-to-use tool with potential to improve biomonitoring.

Sensitivity – early detection and detection of rare or elusive species

ecodiagnostics

Biotic indices can be inferred from molecular data, congruency with morphological approach

Our partners in Switzerland

Schweizerische Eidgenossenschaft Conféderation suisse Confederazione Svizzera Confederaziun svizra

Bundesamt für Umwelt BAFU Office Fédéral de l'environment OFEV Ufficio federale dell'ambiente UFAM Uffizi federal d'ambient UFAM

Kanton Graubünden Chantun Grischun Cantone dei Grigioni

ET CANTON DE GENEVE

Kanton Zürich

STAAT FREIBURG

KANTON AARGAU

POST TENEBRAS LUX

Kanton Bern Canton de Berne

eawag aquatic research 8000

SWISS NATIONAL SCIENCE FOUNDATION

Kanton Zug

ID-GENE ecodiagnostics

THANK YOU FOR YOUR ATTENTION!

INNOVATIVE DNA SOLUTIONS FOR ENVIRONMENTAL MONITORING

ID-Gene, Ch. du Pont-du-Centenaire 109, 1228 Plan-les-Ouates/Geneva, Switzerland Contact:+41 076 693 51 69, info@id-gene.com