

Plant diversity – Driver or passenger along the global change track?

Prof. Nina Buchmann

Institute of Plant Sciences

Global change (tracks)

= Climate change + trace gas conc., temperature, precipitation

land use change deforestation, urbanisation, forestry, agriculture

+ loss of biodiversity

∑ large impacts anticipated on ecosystem functioning (EF) and on provision of ecosystem services to humankind

Climate change track

 Increase in T_{air} and trace gas concentrations in atmosphere (e.g., CO₂, CH₄, N₂O), increased variability in precip patterns,

302 concentration (ppm

Land use and land cover change track

Biodiversity track

= observed loss of known species (i.e., mainly plants, animals), unknown change for unknown species (e.g., microbes)

Temperature track in Europe

Model scenario: Generally warmer with larger variability

Further relevance for plants?

Based on LPJ runs: Generally longer growing seasons and pronounced droughts in Mediterranean regions

(Sitch et al. 2003)

Role of BD in climate impact research?

Briefly: typically underdeveloped

Why?

- Goals of UN-FCCC and UN-CBD do not match, different scientific communities are involved
- No strong voice of CBD comparable to IPCC (despite the Ad-Hoc Technical Expert Group on Biological Diversity and Climate Change 2003 and follow-ups)
- Two attitudes prevail: biodiversity loss as response variable to GC or biodiversity as sole "reservoir" for mitigation & adaptation options

Plant BD: Passenger along GC track

Ecological impact of climate change on ecosystem distribution

Plant BD: Passenger along CC track

Fingerprint of global warming

 underlying consistent shift among species not due to land use change

Phenology (earlier spring): Globally by 2.3 d/10 a Temperate zone by 5.1 d/10 a

(Meta-Analyses: Roots et al. 2003; Parmesan and Yohe 2003)

Plant BD: Only passenger or also driver?

Plant BD: Driver along the GC/CC track?

Central hypotheses

 BD as buffer/insurance against impacts of environment or global change, e.g., extreme climate events.

(Loreau et al. 2002)

Field evidence is rare

Higher productivity_{above}, higher drought resistance, thus higher stability against drought with increasing species diversity.

Experimental evidence is rare

Roofs for 8 weeks, July to Sept. 98, no data on belowground productivity

(Pfisterer and Schmid 2002)

Effect of plant diversity on stability and resilience of aboveground productivity in grasslands after experimental drought.

Plant BD: Driver along the GC/CC track?

extensively managed meadows with 10 – 35 species in the Thüringer Schiefergebirge

(Kahmen et al. 2005)

BD as insurance against drought?

Ecophysiological mechanism behind?

- Obj.: δ¹³C as indicator for drought stress in plants
- No significant change in δ¹³C values
- But reduction of soil moisture only short time compared to life span
 - → no proof of no effect

(Kahmen et al. 2005)

What did we learn from these studies?

- Strong diversity effects on productivity following drought (need to look at right compartment though).
- Drought tolerant species seem to enhance root productivity and as a result maintain overall community productivity.
- Potential positive impacts on other ecosystem services and functions, e.g., soil nutrients, water, erosion, ...
- Evidence for insurance hypothesis, BD might buffer, i.e.,
 "corrects deviation from CC track (to some extent)".

Next steps for us ...

NFS NCCR climate

NCCR Climate, WP 3: Project Plant/Soil

- To quantify effects of drought on the community structure as well as on the quantity and quality of the harvested biomass in grasslands at various altitudes, representative for Switzerland
- To quantify the effects of drought and heat on root growth and on the dynamics of carbon and nitrogen in the plant/soil/atmosphere system
- To identify key processes and fluxes to improve existing models and to provide input parameters for the simulation of grassland productivity in a long-term perspective

Plant BD: Passenger or driver?

Future challenges

Understand functionally diverse communities, not only grasslands, in regard to climate change

- their unknown functional physiology adds large uncertainty to global models,
- they are more likely to adapt to climate change and climate variability than species-poor communities,
- they might offer better (cheaper, clever) options for mitigation or adaptation to climate change.

Implement UN-FCCC and CBD jointly, well coordinated, to gain mutual benefits