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Example from physics:
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F=m⋅a

●  Simplified representation of reality
●  Reduction to the essentials

Why do we need mathematical models?

“Simplicity is the ultimate sophistication”
(Leonardo da Vinci)

Models help to discover general principles!



  

???
F=m⋅a

Every model is a small step on this path

Intuition

EXPERIMENT

THEORY

●  Initial model formulation
●  Confirmation / falsification 

of predictions
●  New model assumptions

●  Model predictions / 
new hypotheses

●  Suggestions for new 
experiments

●  Improvement of  
experimental design

The Systems biology principle

Understanding

How does one find principles 
(theory building)?



  

Modelling techniques - overview

(Steuer, 2007)



  

What are kinetic models?

“kinetics” is derived from greek (κίνησις): movement

In general: the study of quantities which change in time

Chemical kinetics: The study of reaction rates

Methods: ●  Differential equations
●  Stability analysis
●  Control theory



  

Application to biology

●  Population dynamics (long tradition)

●  Biochemical reaction networks

●  Gene-regulatory networks

●  Signal transduction pathways

●  … and many more...



  

Population dynamics

Let x denote a population (of anything, e.g. animals, bacteria, molecules, etc.)

x (t)Then,        describes the population as a function of time t

ẋ (t) =
dx
dt

denotes the temporal change of population x

How the population evolves in time in general depends on the population size:

ẋ = f (x)

(the dependence on population size is described by a function        )f (x)
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Population dynamics

x (t)Then,        describes the population as a function of time t

ẋ (t) =
dx
dt

denotes the temporal change of population x

How the population evolves in time in general depends on the population size:

ẋ = f (x)

(the dependence on population size is described by a function        )f (x)

ordinary differential equation of first order

In general, more than one variable: x1,… , xn

System of differential equations: ẋ1= f 1( x1,… , xn)
⋮

ẋn= f n(x1,… , xn)

˙⃗x= f⃗ ( x⃗)or

Let x denote a population (of anything, e.g. animals, bacteria, molecules, etc.)



  

(Bio-)chemical reaction networks

X 1 , X 2 , . . . , X nChemical species:

General description by a system of ordinary differential equations:

d X i
d t

= f i  X 1 , . . . , X n 

The functions f
i
 depend on the rate laws describing the reaction rates



  

Rate laws

Rate laws describe the rate of a single enzyme in dependence on the 

concentrations of all participating chemical species (substrates and 

products) and possibly affectors (activators / inhibitors) 



  

Constructing a pathway model
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● Get/derive/guess rate laws for each enzymatic reaction
● Construct a differential equation for each chemical species

dA
dt

= v0−v1
producing reaction

consuming reaction
dB
dt

= v1−v2

dC
dt

= v1+v 2−v3−v 4

dD
dt

= v3−v5
...and replace the v

i
 by the appropriate rate laws



  

Mass-action rate law

For (uncatalysed) chemical reactions, the rate v is proportional to all substrate 
concentrations – to the power of their stoichiometric coefficient

Examples: A B
k +

k -

dA
dt

= −k + A+k -B ;
dB
dt

= −
dA
dt

2X+Y Z
k

dY
dt

= −k X 2Y ;
dX
dt

= 2
dY
dt
;
dZ
dt

= −
dY
dt

v = k + A−k -B

v = k X 2Y

In general: ν1 S 1+…+νk S k
k +

k - νn+1 S n+1+…+νk S k

v = k +∏
j=1

n

S j
ν j − k - ∏

j=n+1

k

S j
ν j



  

A simple model of glycolysis

(Pfau et al, 2011, Brief Func Genomics)



  

2XS P
1 2

3

4dX
dt

=2v1−v2−v3

dATP
dt

=−v1v2−v4

dADP
dt

=−
dATP
dt


dX
dt
dA3

dt
= 2 −1 −1

−1 1 −1 
v1

v2

v3


stoichiometric matrixADPATP=A=const

ATP ADP ADP ATP

Glycolysis

J.J. Selkov

Model analysis



  

1. ATP=0

2. ATP=A−
k3

k2

k1Sk 4

k1S−k 4

v1=k1S⋅ATP v2=k2X⋅ADP

v3=k3X

v4=k4ATP

2XS P
ATP ADP ADP ATP

The steady state of a pathway

A metabolite is said to be in steady state if its concentration remains 
constant in time:

0=
dX
dt

=2v1−v2−v3

0=
dATP
dt

=−v1+v2−v4

This means that a metabolite is produced 
and consumed with the same rate!

This leads to the following possible 
stationary ATP concentrations:
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Analytic solutions

stationary ATP concentrations
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Including important details



  

Higgins-Sel'kov oscillator

Simplest description: v0=const. ; v1=k1⋅X⋅Y 2 ; v2=k 2⋅Y

Ẋ=v0−k1⋅X⋅Y
2

Ẏ=k 1⋅X⋅Y
2−k2⋅Y

steady-state: Ẋ=0 and Ẏ=0 ⇔ Ȳ=
v0

k 2

; X̄=
v0⋅k2

2

k1

nullclines: Ẋ=0 ⇔ X=
v0

k 1⋅Y
2 ; Ẏ=0 ⇔ Y=

k 2

k1⋅X

prototype model of upper part of glycolysis:
+



  

Higgins-Sel'kov oscillator

Simplest description: v0=const. ; v1=k1⋅X⋅Y 2 ; v2=k 2⋅Y

Ẋ=v0−k1⋅X⋅Y
2

Ẏ=k 1⋅X⋅Y
2−k2⋅Y

steady-state: Ẋ=0 and Ẏ=0 ⇔ Ȳ=
v0

k 2

; X̄=
v0⋅k2

2

k1

nullclines: Ẋ=0 ⇔ X=
v0

k 1⋅Y
2 ; Ẏ=0 ⇔ Y=

k 2

k1⋅X

prototype model of upper part of glycolysis:
+

rate law expressing activation by Y



  

Higgins-Sel'kov oscillator
Ẋ=v0−k1⋅X⋅Y

2

Ẏ=k 1⋅X⋅Y
2−k2⋅Y

Y

X X

Y
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Higgins-Sel'kov oscillator
Ẋ=v0−k1⋅X⋅Y

2

Ẏ=k 1⋅X⋅Y
2−k2⋅Y

steady-state: Ẋ=0 and Ẏ=0 ⇔ Ȳ=
v0

k 2

; X̄=
v0⋅k2

2

k1

nullclines: Ẋ=0 ⇔ X=
v0

k 1⋅Y
2 ; Ẏ=0 ⇔ Y=

k 2

k1⋅X

Y

X X

Y

v0=1 ; k 1=1 ; k 2=0.95 v0=1 ; k 1=1 ; k 2=1.02

stable steady state unstable steady state;
stable limit cycle



  

Enzyme kinetics

The rate of an enzyme reaction, v, is now defined as the 
change in concentration of product in unit time. Formerly 
it was defined as the amount, in moles or μmoles, 
formed per unit time (which is now termed the rate of 
conversion and used as a basis for the unit of enzyme 
catalytic activity).

Since there is usually 100% conversion of substrates to 
products, rates can usually also be measured by use of 
substrate.

Unless otherwise stated, rates refer to initial rates, the 
instantaneous rate for known concentrations of 
substrates in the absence of products.



  

Initial rate measurements
For a reaction S → P , started at different concentrations of S and zero P:

Initial rate measurement is easier with continuous rather than intermittent 
or spot measurement.



  

The Michaelis-Menten rate law

v = f (S ) =
S⋅V
S+K m

The K
m
 and V have arbitarily been set to 1, where V is the limiting rate (or maximum 

velocity, V
m
 ) and K

m
 is the Michaelis constant.



  

The reversible Michaelis-Menten equation

v net =
(V f /Km,S)(S−P /K eq)

1+S /K m,S+P /K m,P

= f (S , P )

Simultaneous dependence of enzyme rate on both substrate and product. The 
parameters have been set to: K

m,S
 = 1; V

m,f
 = 10; K

m,P
 = 2, and K

eq
 = 4.



  

Taking the equation apart

The equation is actually composed of two parts:

v f =
(V f /K m,S)(S )

1+S /K m,S+P /K m,P

and:

v r =
(V f /Km,S)(−P /K eq)

1+S /K m,S+P /Km,P

and

v net = v f +v r

so it is the numerator term that contains the effect of the reverse reaction, 
whilst the denominator is common.



  

Taking the equation apart

Looking at the forward term only:

v f =
(V f /K m,S)(S )

1+S /K m,S+P /K m,P

the equation still contains a term in the product concentration P.

This reflects the product inhibition that exists because 
of its binding at the active site, even when the K

eq
 is so 

large that the reverse reaction rate v
r
 is very small.



  

Taking the equation apart

Considering the reverse term only:

v r =
(V f /Km,S)(−P /K eq)

1+S /K m,S+P /Km,P

This could also be written as the forward component of the
equation written for P → S:

v r = −
(V r /K m,P)(P )

1+S /K m,S+P /Km,P

which shows that:

K eq =
V f

Km,S

⋅
Km,P

V r

This is the Haldane relationship, showing that it suffices to
know three of the four parameters provided the K

eq
 is known.



EC 4.1.1.39

RuBP+CO
2

2 PGA

Enzyme kinetics of RuBisCO

FALLOVER

activity decline by self-
formed inhibitor

mutant (L335V) does 
not display fallover

XuBP is poor substrate 
with strange kinetics

●  Very important
●  Very big (8L8S subunits, total ~540kDa)
●  Very slow (k

cat
 ~ 3/s)

●  Very strange

(Pearce, 2003)



Modelling RuBisCO

(Witzel et al, 2010, FEBS J)



(Pearce, 2003)

Modelling RuBisCO

wildtype

'loop 6' mutant

comparison with 
experiments

simulation

OK FOR WILDTYPE
ON RuBP



Modelling RuBisCO

A model provides a general description

Simulation of a wide range 
of conditions possible

(Witzel et al, 2010, FEBS J)



(Pearce, 2003)

Modelling RuBisCO

wildtype

'loop 6' mutant

comparison with 
experiments

simulation

NOT OK FOR WILDTYPE
ON XuBP

Improvement needed!



Adding more detail

another postulated inhibitor (DP1P)

must be formed from 
the XuBP branch



(Pearce, 2003)

Modelling RuBisCO

wildtype

'loop 6' mutant

Elaborated model explains wildtype 
and mutant behaviour on both 
substrates (RuBP and XuBP)



Modeling RuBisCO – Summary

●  Are RuBisCOs optimally adapted to their specific intracellular environment?
(as suggested by Tcherkez et al., 2006)

●  What is the specific role of RuBisCO activase?

●  Model provides a unifying theory for RuBisCO dynamics
●  can quantitatively describe the fallover phenomenon
●  can describe various types of RuBisCO
●  associates specific parameters with observed quantities

Open questions

Goals

●  Find realistic parameters for different types of RuBisCO
●  Understand which pressures have led to the evolution of these parameter 

sets
●  Find advantages / disadvantages of RuBisCO / RuBisCO activase system



  

?
?

?

What measures the 
starch content?

How is the correct 
breakdown rate 
'calculated'?

How is carbon partitioning controlled?

Open questions

How does the clock 'tell' 
expected length of day/night?



  

...even more mysteries...

The 'early dusk' experiment by 
Alexander Graf, 
(Graf et al 2010, PNAS)

Even when 'surprised' by a 4 hour 
shorter day, plants 'know' what to do!

The circadian clock is apparently important, because:

Plants cannot adapt to T-cycles different than 24h!



  

Building a mathematical model

Known: ●  Metabolism

●  Circadian clock

Unknown: ●  Regulation of starch synthesis

●  Regulation of starch breakdown

●  How is starch content 
measured?

1. The model must combine known systems with plausible, but 
hypothesised regulatory mechanisms

2. To keep the model tractable, we need to find a compromise between 
detailedness and simplification

Challenges:

Pokhilko et al, 2014, Mol BioSyst



  

Key metabolic pathways in 'source' leafs

●  Carbon fixation
●  Starch synthesis
●  Starch breakdown
●  Sucrose synthesis
●  Sucrose export

Include key steps but simplify pathways!



  

The circadian clock

Done before!

Use published and validated model!

Pokhilko et al., 2011, Mol Syst Biol



  

Model assumptions (postulates)

1. Key sensors:

2. Global regulators:

Timer α dark sensor β

time-to-dawn carbon limitation

Activator D Inhibitor I



  

Regulatory principles



  

S

T

Arithmetic division

v =
S
T

Simplest solution:

Auxiliary compound X (e.g. active form of starch degrading enzyme):

dX
dt

= k 1S−k 2 X T

Rapid activation/deactivation: dX
dt

=0 ⇔ X=
k1

k 2

⋅
S
T

Regulation of starch degradation

Scaldione et al (2013), eLife: Arabidopsis plants perform arithmetic division to prevent starvation at night

Seaton et al (2013), J Roy Soc Interface: 
Regulatory principles and experimental approaches to the circadian control of starch turnover



  

Simulations wild-type

Regulatory principles allow to 
explain wild-type starch turnover 

under various photoperiods



  

Other light protocols

Early dusk

Skeleton

Good quantitative agreement between simulation and experiment!



  

Other light protocols

17h T-cycle

28h T-cycle

Good quantitative agreement between simulation and experiment!



  

What are the unknown components?

Model allows to make predictions of their behaviour

Helps to identify candidates from expression / proteomics data

For example, the component β:

Predicted peak-levels at dawn Microarray data for β-subunit of SNRK1

Promotor structure also supports AKINβ1 as good candidate for β



  

In the tutorial we will play with a model of the 
Calvin Cycle




