No risk – no fun:

Sensing the optimal time to leaf-out

1. CONTEXT

- Timing the leaf-out is crucial for the fitness of deciduous trees inhabiting temperate and higher latitudes.
- Warmer temperatures promote plant development which in turn advances spring phenology.
- This shift increases the probability of frost occurrence, which could put plants at a higher risk for frost damage.

200 200

Fig. 1: Frost damages on oak (left) and beech (right)

3. PRELIMINARY RESULTS Flensburg (Germany), 54.7° N Date (day of year) Ogulin (Croatia), 45.2° N 0.8

Fig. 3: Frost occurrence and growing degree days in relation to leaf-out (violin diagramm) for the northern (A) and southern (B) distribution range of beech (Fagus sylvatica) and horse-chestnut (Aesculus hippocastanum)

Date (day of year)

2. METHOD 01. Jan. Fig. 2: Gridded 1950

- Temperature Dataset
- Probability of frost occurrence
- → Daily absolute min. air temp.
- Growing Degree Days (GDD)
- → Daily mean air temp.
- leaf-out phenology
- → Long-term series of the European Phenological Database (PEP725)

TAKE HOME MESSAGE

- The probability of frost (DOY 5%) over Europe has advanced at higher latitudes and elevations, but delayed for some lowland regions.
- The warmth (GDD) of oceanic climates promotes plant development and potentially puts plants at higher risk for freezing damage.

Fig. 4: Shift of late frost events (DOY 5%) between 1950-80 and 1981-2017

Fig. 5: Growing degree days (GDD) from 1. Jan. until reduced risk of frost (DOY 5%)

4. NEXT STEPS & PERSPECTIVES

- Do tree populations follow different strategies along a continentality gradient and across species
- Conduct experiments to quantify the penalty of freezing damage