

Aggregates reduce likely transport distance of eroded SOC: are our carbon balance correct?

Yaxian Hu Nikolaus J. Kuhn University of Basel Switzerland

Departement UW Umweltwissenschaften

runoff

Eroding site

Fate of eroded soil organic carbon

U/F

Varticle

In the form of aggregates

4

Transport distance Horizontal vector Vertical vector

Settling velocity Aggregation effects

Equivalent Quartz Size (EQS)

representing the diameter of a nominal spherical quartz particle that would fall with the same velocity as the aggregated particle for which fall velocity is measured (Loch, 2001, Computers and Electronics

in Agriculture).

Transport distance & Settling velocity

(Kinnell 2001, Earth Surface Processes and Landforms; Kinnell, 2004, Hydrological Processes)

First-step assumption: a given layer of runoff

Facilitate settling velocity & reduce transport distance (Hu et al., 2013, BSG) Pores, shapes, involve organic matter of low density

ity veloci 50 Settli

Flow velocity

Rainfall simulation Fulljet ¹/₂ HH 50W multiple-sized drops 100 mm h⁻¹

	Texture	Ge (n
Möhlin	Silty loam	
Movelier	Silty clay	2

Experimental design

Sediment

eneral Aggregates SOC > 250 µm (%) ng g⁻¹)

14.0 67.24

42.8

91.37

Collect by predetermined time intervals (next slide)

6

Fra

S

Bui

ocity

 $\mathbf{0}$

Ο

Bu

t

Ibe

Repeated 3 times Each had 3 stages N = 9 Single rainfall event

50 days respiration measurement by Gas Chromatograph

Total organic carbon concentration by LECO RC 612 at 550°C

Settling velocity and likely fate

EQS (µm)

- > 250
- 125 250
- 63 125
- 32 63
- 20 32
 - < 20

Settling velocity (n

>4.5 × 10⁻²

- 1.5×10^{-2} 4.5 × 10
- 3.0×10^{-3} 1.5 × 10
- 1.0×10^{-3} 3.0×10^{-3}
 - $< 1.0 \times 10^{-3}$

Suspension

n·s ⁻¹)	Likely
0 ⁻²	Re-deposited alo
0-3	Possibly transferm
	Likely transferre

fate

ong hill slopes

red into rivers

ed into rivers

Likely fate of eroded SOC along hillslope

Aggregation of source soil

Considerably reduces the transport distance of eroded SOC Skews re-deposition of eroded SOC towards the terrestrial system

Re-distribution of eroded SOC by mineral particles

Respiration rate per day per gram soil --- different EQS classes over 50 days

Eroded fractions have higher respiration rates than the original soil (colored vs. black line)

2000

50

8

 \frown

8

Cumulative respiration rate over 50 days >250 µm 125-250µm 63-125µm 32-63µm 20-63µm <20um Original soil

Incubation days

The presumably stable SOC, not any more stable in micro-aggregates (63-250 µm, dotted and dashed blue lines) with fine particles (< 20 µm, dashed pink lines)

Erosion and transport cause aggregate break down and extra exposure

× 8 days 8 8 e E G emission Consideration CN. 40 Ë CN. 0 B 8 0

Likely fate along hill slope

272 mg CO₂-C (4.8% of total SOC eroded)

25%	12%

Sediment: 430 g Eroded SOC: 5622 mg

EQS Fractions

Sediment	430 g
Re-deposited along hill slopes (%)	60
Possibly transferred into rivers (%)	36
Probably transferred into rivers (%)	4
Original soil	430 g

Difference

Erosion and transport processes accelerate eroded SOC mineralization, and thus may contribute extra atmospheric CO₂.

Carbon balances built only on SOC stocks from sites of erosion or colluvial deposition may not adequately consider the potential SOC re-deposition into the terrestrial system.

Hu and Kuhn, Biogeosciences (accepted) **Related publications:** Hu et al. (2013), British Society Geomorphology; Youtube: settling tube apparatus

Result Summary and Conclusion

Aggregation of source soil, and thus that of sediment, considerably reduces the transport distance of eroded SOC, and hence skews its re-deposition towards the terrestrial system.

Dr. Peter A. Kinnell University of Canberra, Australia Great team in University of Basel: ____ Fister

Financial support from SGmG

Reference

Flanagan DC, Nearing MA (2000) Sediment particle sorting on hillslope profiles in the WEPP model. Transactions of the ASAE 43 (3): 573-583. Gibbs RJ, Matthews MD, Link DA. 1971. The relationship between sphere size and settling velocity. J. Sed. Petrol. 41: 7-18. Hairsine PB, McTainsh, G. 1986. The Giffith Tube: A simple settling velocity of soil aggregates. School of Australian Environmental Studies, Griffith University, AES Working Paper 3/86.

Kinnell PIA, McLachlan C. 1988. An injection barrel for the top entry sedimentation tube. *Technical memorandum, Division of Soils, CSIRO Australia* 43: 2p Loch RJ. 2001. Settling velocity – a new approach to assessing soil and sediment properties. *Computers and Electronics in Agriculture* **31**: 305-316. Morgan RPC, Quinton JN, Smith RE, Govers G, Poesen JWA, Auerswald K, Chisci G, Torri D, Styczen ME. 1998. The European soil erosion model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. *Earth Surface Processes and Landforms* **23**: 527-544. North PF. 1976. Towards an absolute measurement of soil structural stability using ultrasound. J.Soil Sci. 27: 451-459. Proffitt APB, Rose CW, Lovell CJ. 1993. Settling velocity characteristic of sediment detached from a soil surface by raindrop impact. Catena 20: 27-40. Starr GC, Lal R, Malone R, Hothem D, Owens L, Kimble J. 2000. Modeling soil carbon transported by water erosion processes. Land Degradation & Development 11: 83-91. van Oost K, Beuselinck L, Hairsine PB, Govers G. 2004. Spatial evaluation of a multi-class sediment transport and deposition model. Earth Surface Processes and Landforms 29: 1027-1044.

Outlook

Sandy soil? **Rainfall intensity, and multiple rainfall events? Slope length, gradient?** Soil management, tillage erosion? **Re-aggregation on depositional sites?** Longevity of the carbon quality?

Acknowledgement

Franz Conen, Hans-Rudolf Rüegg, Liangang Xiao, Marianne Caroni, Mathias Würsch, Philip Greenwood, Ruth Strunk, Wolfgang