Report on "CHIPP LHC Computing"

- Status of operation
- News on strategic and operational issues

Status of operation

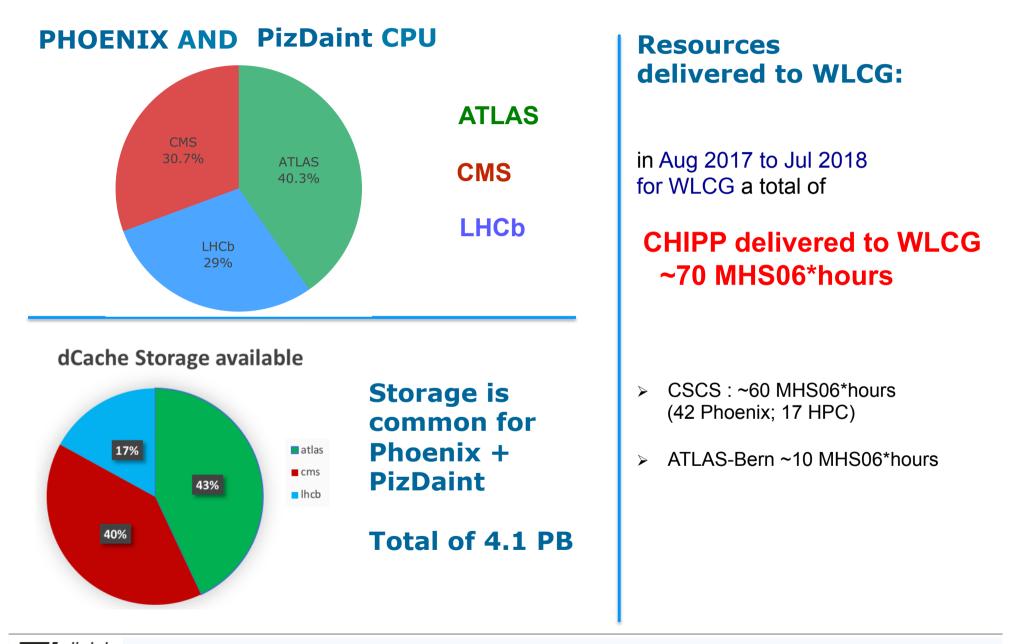
eth | zürich

Overview Swiss LHC Computing Resources

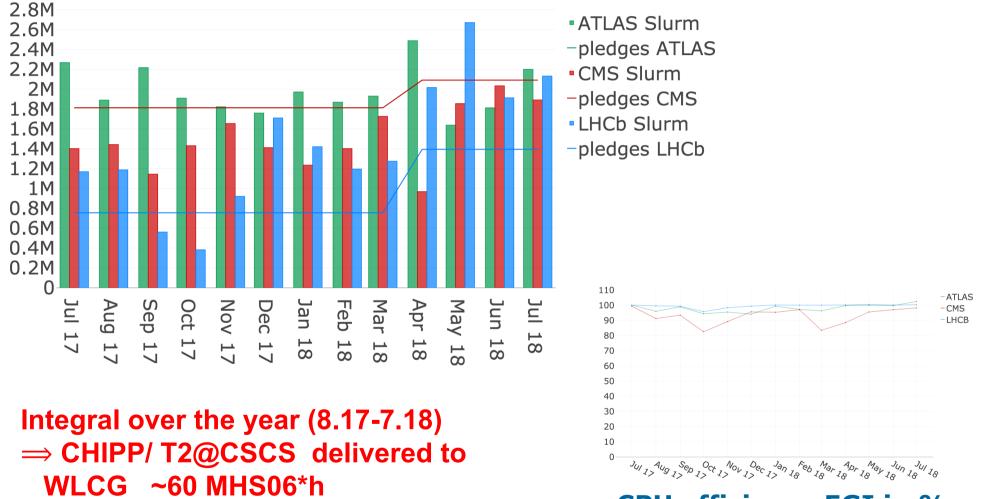
• Switzerland operates Tier-2 Regional Centres at CSCS and AEC (UBe)

- Switzerland is committed as member of WLCG to contribute resources; via MoU
- resources provided to WLCG are exploited centrally by experiments
- → Tier-2 operated at CSCS serves all 3 experiments: ATLAS,CMS, LHCb ⇒ A) own linux cluster PHOENIX and B) shared resources on HPC/PizDaint
- Tier-2 operated at AEC-UNIBE serves ATLAS only
 - Collaboration agreement for operation of T2 between CHIPP and CSCS/ ETHZ - with additional ETHZ funding (2007-2018)

• Complemented by local Tier-3 clusters at PSI, UBe, UGe, UZH, EPFL


ETHzürich Christoph Grab, ETH

EGI (European Grid Infrastructure); NO	GI WLCG (Wordwide LHC compute Grid)					
CSCS T2 -ATLAS, CMS, LHCb •PHOENIX: • 5800 cores; 65 kHS06	PSI-ETHZ-UZH T3 (CMS) 0818 CHPP C 1184 cores;13.4 kHS06;1168TB Net Regular + 229 RO cache Vet Net					
 PizDaint: 3876 cores; 46 kHS06 Common: ~4100 TB disk CPU / Disk share~ 40:40:20 / 43:40:17 80 Gb/s to 100 Gb/s backbone AEC-UNIBE T2/T3 (ATLAS)	DPNC-UNIGE T3 (ATLAS) 784 cores; 6.0 kHS06; 828 TB + add 110 cores on UGe Cluster					
	UZH T3 (LHCb)OB18560 cores; 6.8 kHS06; 340 TBincl. 88 cores on ScienceCloud					
 2400 cores ; ~22 kHS06 1000 TB disk / 250 TB scratch 2x10 Gb/s to backbone 	EPFL T3 (LHCb) 410 cores; 6.8 kHS06; 80 TB					
Operation : Monthly meetings; (CH; EGI/GDB).						


Note: sum of Tier-3 resources [~33 kHS06; ~2.4 PB] surpasses ~1/2 of Tier-2 resources (except ATLAS)

Accounting in CPU-hours (PizDaint, Phoenix)

CPU efficiency EGI in %

CHIPP WLCG Computing Resources (8/18)

CHIPP Tier-2 pledged vs delivered resources (source REBUS)

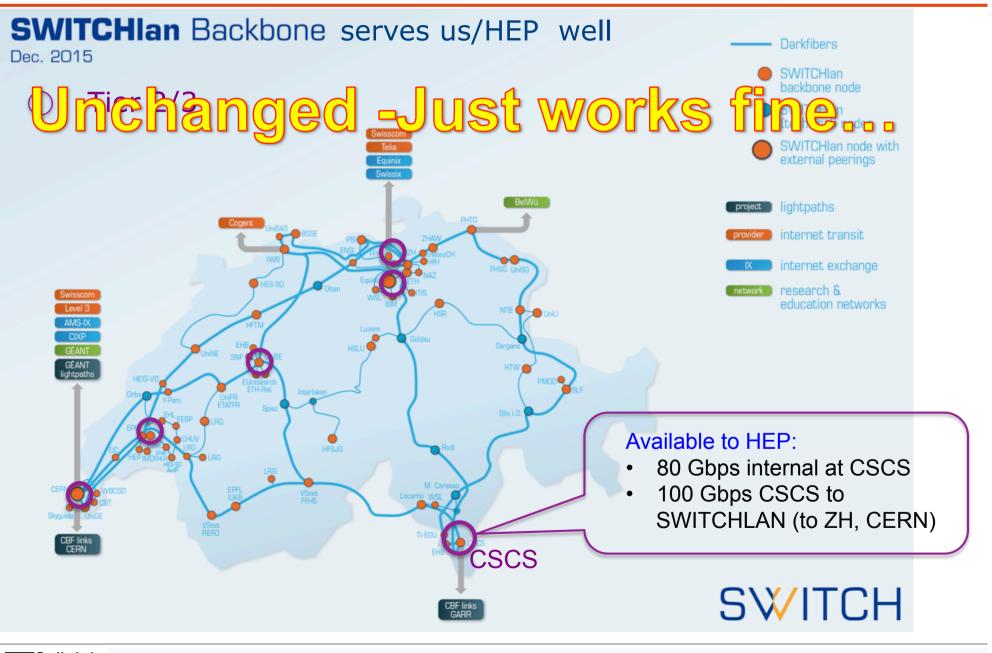
Year: 2018 O Month: 8						
Infrastructure	Site Name 🗘	Physical CPU ♀	Logical CPU \$	HEPSPEC06	Disk (GB) 🗘	Tape (GB) 🗘
EGI	CSCS-LCG2	442	10,084	116,064	5,162,057	0
EGI	UNIBE-LHEP	147	2,278	23,970	1,070,870	0
Total		589	12,362	140,034	6,232,927	0

Status 8/2018

Federation Pledges										
Year: 2018 📀										
Pledge Type 🔺	ALICE 🗘	% of Req. \diamondsuit	ATLAS 🗘	% of Req. \diamondsuit	CMS ≎	% of Req. \diamondsuit	LHCb 🗘	% of Req. \diamondsuit	SUM ≎	% of Req.
CPU (HEP-SPEC06)			54,000	5%	36,000	4%	24,000	17%	114,000	5%
Disk (Tbytes)			2,100	2%	1,600	2%	800	14%	4,500	3%
Showing 1 to 2 of 2 entries										

https://wlcg-rebus.cern.ch/apps/topology/federation/259/

→ Pledges to WLCG for 2018 are met; next pledges for 2019 are due in Sep. 2018.



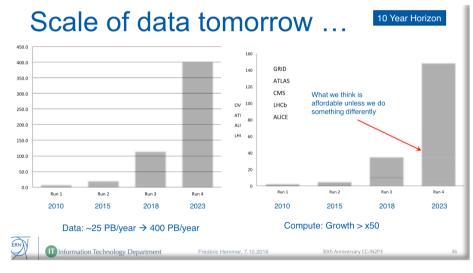
Swiss Tier-3 resources are undispensible tools and exist in quite different "flavours" for :

- ATLAS: each at UBern and at UGe
- → CMS: common T3 for ETHZ, UZH, PSI at PSI
- LHCb: each at UZH and EPFL.
- Their capacity sum up to ~50% and 70% of CPU and storage of the Tier-2 (at CSCS w/out AEC).

Swiss National Network

News on Strategic and Operational Issues

I. Collaboration Agreement ETH – CHIPP


- CHIPP CSCS cooperation(to provide resources and deliver our pledged resources to WLCG) is fixed in a "Collaboration Agreement" between ETHZ and CHIPP.
- This CA describes the duties and rights of both parties:
 - > The CA was originally negotiated 2007 and renewed in July 2013;
 - The CA has now (July 2018) been successfully renewed for another four years, for the duration 1.1.2019-31.12.2022 !.
- In the CA, ETHZ also commits additional voluntary funding by ETHZ/CSCS, which covers costs for electricity & cooling and additional personnel (1 FTE)

II. Challenging and strategic issues (1)

- Challenge for LHC computing for the HL-LHC era in the 2025+ :
 - > Present LHC compute models do not scale beyond ~2025,
 computing needs are expected to go up ~50 x in around 8-10 years;
 technology advance alone will accommodate a factor ~5
 → need roughly another order of magnitude increase
- Many activities exist worldwide to face this HL-LHC challenge
- Adapt to new architectures (HPC, ARM, ... mobile??)
- exploit all existing resources
- BUT: Invest also in SOFTWARE,

i.e. algorithms ... (see "Community White Paper" by HEP-SF) \rightarrow means also in PEOPLE !

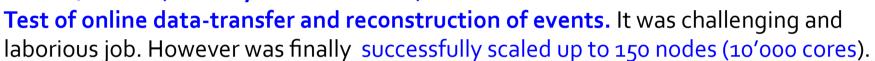
II. Strategic + Operational issues (2) – LHC@HPC

- Switzerland started project LHConCRAY in 2016 (initiated at AEC-Bern) to test possibility and economy of LHC workloads on HPCs.
- In December 2017: concluded tests successfully.
 - Feam CSCS+CHIPP succeeded to run ALL LHC job-types on CRAY ! found similar job efficiency as PHOENIX, but higher economic value
 - Meeting of "CHIPP LHC computing board" on 7.12.2017, decided to transition to HPC for providing the Swiss T2-resources @CSCS.
 - \succ

This means:

- 1) CHIPP will continue to provide the pledges of Switzerland towards WLCG
- 2) CSCS will provide shared HPC resources for LHC computing, based on same FLAT budget by FLARE/SNF (and ETHZ+Uni contributions)
- 3) PHOENIX as a "separate dedicated cluster" will be phased out.
- 4) AEC at Bern continues providing additional ATLAS-T2 resources

eth | zürich


II. Strategic + Operational issues (3) Resource Strategy of CHIPP Tier-2 @CSCS

- The growth growth of resources of Tier-2 @CSCS will be provided using shared resources at CSCS
 (e.g. yearly increase expected: compute ~27% and storage ~15%)
- Transition from "HW investment model" to "Paying for services" model: "LCaaS" (LHC-Computing as a Service).
 CHIPP will pay for resource provisioning and operational costs:
 - Compute : Dedicated number of nodes, allocated to CHIPP
 - Storage : Allocation of disk space via the SAN (as today)
 - > Operational costs: ie. personnel, operations, network, licenses, ...

III. Strategic Issue: Pilot development projects (I)

A) Pilot projects testing Tier-o spill-over of data to CSCS: exploit fast network and flexibility of HPC@CSCS resource allocation.

• ATLAS/CERN: (Sciacca, Klimentov etal):

- We consider validating Piz Daint for Tier-0 workloads an outstanding achievement
 - Keeping in Mind that HPC are currently used worldwide for simulation only
 - Piz Daint runs all Tier-2 workloads in production, can run Tier-0 workloads too, showing that a general purpose HPC can serve ATLAS computing at all levels

Gianfranco Sciacca - AEC / LHEP Universität Bern • 31 July 2018, ADC weekly

 CMS/CERN: (Boccali, Wissing, et al): Tests to run standard CMS Tier-o workflows directly at CSCS were very successful, including stage-in-and-out to CERN; scaling to 10k cores still missing Next: Test scaling.

eth | zürich

 $u^{\scriptscriptstyle b}$

D UNIVERSITÄT BERN AEC ALBERT EINSTEIN CENTER

III. Strategic Issue: Pilot development projects (II)

Process of setting up cooperation CSCS – CERN to "Use of Remote Swiss HPC Facilities" in view of solving the computing challenges of the future for HL-LHC

B) Pilot projects using GPU/CPU (in progress):

Goal is to exploit the GPU resources on HPC@CSCS through direct remote access (partly transparent).

Various authors from the ML community at CMS/ETH, with different physics applications (Pierini, Musella, Kasieczka, Pata, Vlimant, etc)

- CMS/ETH : IMPROVING PRECISION THROUGH DEEP LEARNING IN HEP
- CMS/CERN EVENT GENERATORS BASED ON DEEP LEARNING FOR HIGH-LUMINOSITY LHC
- CMS/CERN: DEVELOPING DEEP LEARNING APPLICATIONS FOR THE CMS HGCAL-CALORIMETER
- CMS/CERN: APPLICATIONS OF DEEP LEARNING IN HIGH ENERGY PHYSICS

 \Rightarrow Some projects successfully completed (and used in publications), some still in progress. \Rightarrow extremely useful for certain HEP applications.

https://twiki.cern.ch/twiki/bin/viewauth/CMS/CmsMLProposalsCSCS

eth | zürich

Organisation for CHIPP computing (III) (08/2018)

CHIPP LHC Computing board decides on strategic issues. It is advised by technical a advisory board.

	Technical Advisory board	CHIPP LHC	<u>computing board</u>
ATLAS	G.Sciacca (UBe) T.Golling (UGe)	M.Weber T.Golling (\ /
CMS	C.Grab (ETHZ) chair T. Kljinsmaa (ETHZ) D.Feichtinger (PSI) N.Loktionova (PSI)	•	U
LHCb THCp	R.Bernet (UZH) L.Pescatore, (EPFL)	N.Serra (l A.Bay (EF	,
Swiss National Supercomputing Centre	P.Fernandez, M.Gila, M. De Lorenzi (CSCS)	T. Schulth	ess (CSCS)