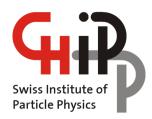



### **CHIPP Board meeting**

#### Welcome to the:

- Board members
- Honorary Board members
- Observers at the Board


Stephanie Vögeli kindly accepted to replace Xavier Reymond from SERI



## Agenda item 1: Agenda

- The final Agenda has been distributed on Sunday 7 October 2018
- All documents have been made available on a confidential CHIPP internet page.

Agenda approved?



### AGENDA

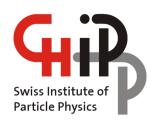
#### **DECISION ITEMS**

4. Report on SWICH Workshop in Fribourg [Tatsuya Nakada]

5. CHIPP activities and Budget 2019 [Tatsuya Nakada]

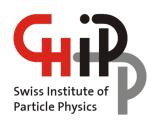
#### **DISCUSSION ITEMS**

- 6. FLARE funding requests Introduction & Table
  - preparation for future requests by known projects
  - other projects requiring large funding
  - priority list for CHIPP


for discussion

7. Computing steering board [Christoph Grab]

for discussion


8. CHIPP plenary meeting 2019 [Tatsuya Nakada]

for discussion



## Agenda item 2: Proxy Votes

- The following Proxies have been designated:
- Malte Hildebrandt (for Stefan Ritt)
- Michael Spira (for Adrian Signer)
- Günther Dissertori (for Rainer Wallny)
- Michele Weber (for Giuseppe lacobucci)
- Anna Sfyrla (for *Tobias Golling*)
- Tatsuya Nakada (for Martin Kunz)



## Agenda item 2: Apologies & Quorum

The following apologies have been received:

Federico Sanchez, Xavier Reymond, Laura Baudis, Maurice Bourquin, Andreas Schopper

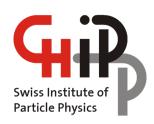
- Board members with voting rights: 66
- Quorum (1/3 of Board): 22 votes, reached?

#### 5 proxy

to be counted in the quorum: Mikko Laine, Bernd Krusche, Stefano Pozzorini, Susanne Reffert



### CHIPP observers


Bruno Moor (SERI) → will retire at the end of this month

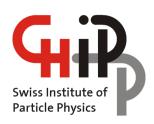
→ Dr Gregor Häfliger (from SERI)

Xavier Reymond (SERI)

Marc Türler (SNSF) → Observer from the SCNAT Thomas Werder (SNSF)

For the 16<sup>th</sup> October Cornelia Sommer (SNSF) Stephanie Vögeli (SERI)

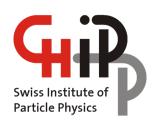



## Agenda item 3: Minutes of the last meeting

 Final draft minutes of the CHIPP Board 2018-02 (15 October 2018) have been made available on <a href="www.chipp.ch">www.chipp.ch</a> together with the other Board documents.

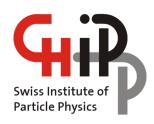
#### The Board is invited

to approve the minutes of the last meeting


Base: Art. 27, litt. a; simple majority



# Agenda item 4: Report on SWICH Workshop in Fribourg


## CHIPP document to be submitted as input to the European Strategy

CHIPP meeting on 16 October 2018



## Guideline agreed by the EB and Editorial Board (Michele, Rainer, and Ruth)

- Discuss only scientific issues
- Concentrate, mainly, on the issues related to the future facilities
- Remain very short without too much explanation of scientific details.
- TN produce the first draft



### Where are we?

- TN produced the first draft
- EB and Editorial Board discussion is to start
- Here is a snapshot of the first draft (with a small modifications).

#### Swiss input for the discussion on the European Strategy for Particle Physics update

Swiss Institute for Particle Physic (CHIPP)

Draft V2, 16 October 2018

The Swiss Institute for Particle Physicists to coordinate activities in nucleoproduce Swiss input for the update of the the CHIPP held tow workshops in 2013 field was reviewed and discussed. Swiss is agreed in the second workshop held in Seposition focused mainly on the issues rel

# Introducing CHIPP and the process for producing this document

To facilitate the discussion, let us file the discovery of the Higgs particle. It states four high priority items:

- Exploitation of the LHC as the European highest priority.
- Research and Development (R&D) of accelerators including the design studies in order to ensure the Europe to stay at the forefront of the high energy frontier.
- Importance of  $e^+e^-$  colliders for Higgs studies complementing the LHC.
- Developing a neutrino programme play a leading role in long baseline

In addition, the ESPG notes

theory,

18

- precision physics,
- detector R&D and computing, and
- explore further collaboration with astroparticle physics and maintain the CERN support for nuclear physics

## Recapturing the scientific issues in the current Strategy

27 as important scientific issues.

Since then, the LHC has been running very smoothly at a centre of mass energy of 13 TeV and its luminos activities for the fut Future Circular Col discussion. The FO installing pp,  $e^+e^$ mass energy for th energy range from starting at  $\sqrt{s} = 3$ both FCC  $(e^+e^-)$  a in a clean lepton co

neutrino platform,

### Summarising the progress up to now for the issues related to the four high priority items of ESPP, with a remark that the strategy is followed rather well.

tested with charged particle beams. Large prototype for the US and a smaller prototype for the Japanese neutrino programmes are being tested. It can be said that the development of the European particle he LHC

So far, no new part Situation at LHC. still has plenty of room

ws some d Model

interesting results, which if confirmed. Energy of the LHC must reach the designed one, 14 TeV. The HL-LHC will 47 boost the event statistics by more than an order of magnitude. Finally, there might be a

Therefore, the CHIPP concludes that exploitation of the LHC, not only for high  $p_{\rm T}$ but also for flavour physics, should remain as the first priority for Europe.

cannot be explained by the Standard Model if the observed effects are real. However, they are not yet statistically significant and for some cases Standard Model predictions are not accurate enough. By noting the absence of new particles at the LHC, there is no firm idea on the energy scale for new physics at this moment. Therefore, we are not yet in the position to propose the next energy frontier machine to be built in Europe. However, the Swiss community considers that the FCC to be currently the most promising option for the following reasons. While the LHC can probe new physics up to  $\sim 1$  TeV, the FCC as a proton-proton collider can extend the sensitivity to  $\sim 10$  TeV where we hope that new physics will emerge. As an  $e^+e^-$  collider, it can perform electroweak test to probe new physics with a precision far better than what was achieved by the LEP. It will provide much more Higgs particles than the CLIC or ILC and comparable performance for the  $t-\bar{t}$ studies as the CLIC. For this reason, FCC with  $e^+e^-$  collider will remain viable even if a linear collider were constructed before.

Therefore, R&D effort for FCC must be intensified with a particular focus on high field magnets crucial for the proton-proton option. Possible ways to realise such a

Since then, the LHC has been running very smoothly at a centre of mass energy of 13 TeV and its luminosity upgrade project (HL-LHC) has started. The R&D and design study activities for the future high energy machines at CERN are resulting in documents on the Future Circular Collider (FCC) and Compact Linear Collider (CLIC) for the ESPP update discussion. The FCC consists of a 100 km circumference circular tunnel with options of installing pp,  $e^+e^-$ ,  $pe^\pm$  (also possibly with heavy ions) colliders inside. The centre of mass energy for the pp option is abut 100 TeV and the  $e^+e^-$  option would cover the energy range from the  $Z^0$  production to the  $t\bar{t}$  threshold. The CLIC is a linear collider starting at  $\sqrt{s} = 380$  GeV with a goal to extend its energy to a multi TeV range. The both FCC  $(e^+e^-)$  and CLIC would provide excellent opportunities to study Higgs particle in a clean lepton collider environment. CERN also constructed a facility, so called CERN neutrino platform, where large scale prototype detectors for neutrino experiments can be tested with charged particle beams. Large prototype for the US and a smaller prototype for the Japanese neutrino programmes are being tested. It can be said that the development of the European particle physics activities follow rather well the ESPP. So far, no new particle has been found by the ATLAS and CMS. However, the LHC still has plenty of room for exploitation. A flavour physics experiment, LHCb, shows some inter if co boo

27 as important scientific issues.

can

are

idea

Posi Swis

a pr

Situation with the R&D and design studies for the Energy frontier machines. Admitting that we are not yet in a position to propose the next energy frontier machine in Europe. But given the attractive points for FCC, FCC appears to be the currently CHIPP most favoured choice.

much more Higgs particles than the CLIC or ILC and comparable performance for the  $t-\overline{t}$  studies as the CLIC. For this reason, FCC with  $e^+e^-$  collider will remain viable even if a

physics with a precision far better than what was achieved by the LEP. It will provide

Therefore, R&D effort for FCC must be intensified with a particular focus on high field magnets crucial for the proton-proton option. Possible ways to realise such a world scale project must be searched.

101

For the long term future, we should explore ways to reach energy scales much beyond 10 TeV, which is currently out of scope.

— The Swiss community considers that sustained R&D effort for novel acceleration technologies must continue.

In this context, a linear collider would be a possible place where such technologies could be applied and serve as a base for the future development.

— The Europe should be prepared for discussing how to support linear collider effort reflecting upon the worldwide citation

### The CERN n and worldwide t Importance of CERN neutrino platform

The CHIP supports the operation of the CERTA neutrino diatorm to continue and

The CHIPP supports the operation of the CERN neutrino platform to continue and even to be extended, if required, so that the community can exploit neutrino facilities world wide.

— The CHIPP thinks that when the necessary effort for the HL-LHC construction starts to decrease, CERN should explore a possibility of constructing well motivated noncollider facilities which are unique to CERN.

The Swiss community considers a beam dump facility with the SPS beam particularly interesting. The SPS provides high intensity high energy proton beam which makes the

beam dump facility to be a unique place to look for rare phenomena in a wide energy range.

The fact that new physics must be searched at different fronts also brings a great opportunities to facilities at lower energies performing precision physics. This also generates welcome diversity in the field.

 We supports strongly to continue the activities at national facilities for performing precision physics.

In this context, the Swiss community would like to recall the PSI facilities which provide the world most intensive pions and muons, as well as ultra cold neutrons providing unique opportunities for experiments.

Astroparticle physics is a still expanding field where Swiss particle physicists are heavily involved. It addresses some of very relevant questions in particle physics and adopted many detector technologies developed in particle physics. The core mission of CERN lies on the accelerator based facility and it should remain so. On the other hand, the CERN expertise in detector construction and know-how to manage large facilities could make a big difference for astroparticle physics experiments even with a modest level of contribution from CERN. For this reason, the Swiss community thinks that

 CERN should consider contributing to well selected astroparticle physics experiments where CERN participation can make unique contribution.

For the long term future, we should explore ways to reach energy scales much beyond 10 TeV, which is currently out of scope.

 The Swiss community considers that sustained R&D effort for novel acceleration technologies must continue.

In this context, a linear collider would be a possible place where such technologies could be applied and serve as a base for the future development.

— The Europe should be prepared for discussing how to support linear collider effort reflecting upon the worldwide situation.

The CERN neutrino platform is working very well for the neutrino community in Europe and worldwide to make necessary detector R&D with charged particle test beams.

— The CHIPP supports the operation of the CERN neutrino platform to continue and even to be extended, if required, so that the community can exploit neutrino facilities world wide

Given that w for phenomena b The CERN acce

The CHIP

## Importance of moderate CERN investment in non-collider facilities

to decrease, Oracly should explore a possibility of constituting wen motivated non

The CHIPP thinks that when the necessary effort for the HL-LHC construction starts to decrease, CERN should explore a possibility of constructing well motivated non-collider facilities which are unique to CERN.

welco

### Mention the SPS beam dump as a unique possibility

the world most intensive pions and muons, as well as ultra cold neutrons providing unique opportunities for experiments.

Astroparticle physics is a still expanding field where Swiss particle physicists are heavily involved. It addresses some of very relevant questions in particle physics and adopted many detector technologies developed in particle physics. The core mission of CERN lies on the accelerator based facility and it should remain so. On the other hand, the CERN expertise in detector construction and know-how to manage large facilities could make a big difference for astroparticle physics experiments even with a modest level of contribution from CERN. For this reason, the Swiss community thinks that

 CERN should consider contributing to well selected astroparticle physics experiments where CERN participation can make unique contribution.

, 16 October 2018

For the long term future, we should explore ways to reach energy scales much beyond 10 TeV, which is currently out of scope.

— The Swiss community considers that sustained R&D effort for novel acceleration technologies must continue.

In this context, a linear collider would be a possible place where such technologies could be applied and serve as a base for the future development.

— The Europe should be prepared for discussing how to support linear collider effort reflecting upon the worldwide situation.

The CERN neutrino platform is working very well for the neutrino community in Europe and worldwide to make necessary detector R&D with charged particle test beams.

— The CHIPP supports the operation of the CERN neutrino platform to continue and even to be extended, if required, so that the community can exploit neutrino facilities world wide.

Given that we are still looking for sign of new physics, we should not restrict our search for phenomena beyond the Standard Model to the experiments at the high energy colliders. The CERN accelerator complex can provide unique opportunities with modest cost.

— The CHIPP thinks that when the necessary effort for the HL-LHC construction starts to decrease, CERN should explore a possibility of constructing well motivated noncollider facilities which are unique to CERN.

The Swiss community considers a beam dump facility with the SPS beam particularly interesting. The SPS provides high intensity high energy proton beam which makes the beam dump facility to be a unique place to look for rare phenomena in a wide energy range.

The fact that new physics must be searched at different fronts also brings a great opportunities to facilities at lower energies performing precision physics. This also generates welcome diversity in the field

— We support precision procession procession

opportunities for

Importance of exploiting facilities at national laboratories

Astroparticle involved. It addresses some of very relevant questions in particle physics and adopted many

 We supports strongly to continue the activities at national facilities for performing precision physics.

for astroparticle physics experiments even with a modest level of contribution from CERN.

For this reason, the Swiss community thinks that

- CERN sho where CEI Mention the PSI

physics experiments

, 16 October 2018

100 det

acc

For the long term future, we should explore ways to reach energy scales much beyond 10 TeV, which is currently out of scope.

— The Swiss community considers that sustained R&D effort for novel acceleration technologies must continue.

In this context, a linear collider would be a possible place where such technologies could be applied and serve as a base for the future development.

— The Europe should be prepared for discussing how to support linear collider effort reflecting upon the worldwide situation.

The CERN neutrino platform is working very well for the neutrino community in Europe and worldwide to make necessary detector R&D with charged particle test beams.

— The CHIPP supports the operation of the CERN neutrino platform to continue and even to be extended, if required, so that the community can exploit neutrino facilities world wide.

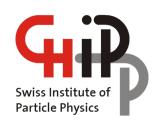
Given that we are still looking for sign of new physics, we should not restrict our search for phenomena beyond the Standard Model to the experiments at the high energy colliders. The CERN accelerator complex can provide unique opportunities with modest cost.

— The CHIPP thinks that when the necessary effort for the HL-LHC construction starts to decrease, CERN should explore a possibility of constructing well motivated noncollider facilities which are unique to CERN.

The Swiss community considers a beam dump facility with the SPS beam particularly interesting. The SPS provides high intensity high energy proton beam which makes the beam dump facility to be a unique place to look for rare phenomena in a wide energy range.

The fact that new physics must be searched at different fronts also brings a great opportunities to facilities at lower energies performing precision physics. This also generates welcome diversity in the field.

 We supports strongly to continue the activities at national facilities for performing precision physics.
 In this context, the Swiss community would like to recall the PSI facilities which provide


In this context, the Swiss community would like to recall the PSI facilities which provide the world most intensive pions and muons, as well as ultra cold neutrons providing unique opportunities for experiments.

Astroparticle physics is a still expanding field where Swiss particle physicists are heavily involved. It addresses some of very relevant questions in particle physics and adopted many

### CH strong involvement in astroparticle experiments

for astroparticle physics experiments even with a modest level of contribution from CERN.

CERN should consider contributing to well selected astroparticle physics experiments where CERN participation can make unique contribution.



## Agenda item 5: CHIPP activities and Budget 2019

The specific CHIPP activities for 2019 are:

The CHIPP PhD Winter School 2019 (organizational and financial support)

The CHIPP Annual Plenary (organization, program and active participation)

The PSI workshop (financial support)

#### The CHIPP outreach activities:

- The dialogue with the society through the SCNAT thematic portal on particle physics
- The CHIPP membership in IPPOG (outreach strategy and activities)
- o Possibly other targeted outreach activities as the maintenance of the CHIPP Twitter account.

The EPPCN: European Particle Physics Communication Network (active Swiss participation)

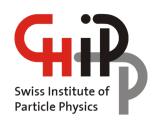
The CHIPP Prize (advertisement, selection, and ceremony)

The formal CHIPP Plenary (organization, program and active participation)

The CHIPP Board and EB meetings (overseeing and running the association)

The CHIPP Membership in SCNAT (annual report, funding requests, active participation in MAP platform and delegation meetings)

The follow-up of the joint FLARE requests on LHC M&O and Grid Computing (yearly adjustment)


The Round Table International (active participation)

The coordination of future particle physics activities in Switzerland (CHIPP Tables, etc.)

The CHIPP input to SNSF and SERI regarding the Swiss representation in the CERN Council, in APPEC, and in NuPECC

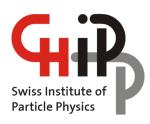
The CHIPP representation in ECFA and in ACCU (via direct election)

The CHIPP observer status in CHAPs and in the Committee on Space Research (CSR).

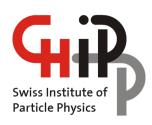


#### **CHIPP Membership fee: calculation for 2019**

10.10.18


Membership base: CHIPP database 10.10.2018

#### Final numbers will be based on membership status in early Nov. 2018


#### 110 CHF/capita (excluding honorary members) PLUS 5600, and 2000 CHF respectively

| Total             | 472           | 20                   |              | 46'420           | 35'600            | 82'020      |  |
|-------------------|---------------|----------------------|--------------|------------------|-------------------|-------------|--|
| FR <sup>3</sup>   | 1             | 0                    | 0            | 0                | 0                 | 0           |  |
| CERN <sup>2</sup> | 29            | 0                    | 0            | 0                | 0                 | 0           |  |
| PSI               | 50            | 1                    | 110          | 5'390            | 5'600             | 10'990      |  |
| ETHZ Theory       | 12            | 3                    | 110          | 990              | 3 000             |             |  |
| ETHZ              | 78            | 2                    | 110          | 8'360            | 5'600             | 14'950      |  |
| EPFL Theory       | 6             | 0                    | 110          | 660              | 3 000             | 10 440      |  |
| EPFL              | 39            | 1                    | 110          | 4'180            | 5'600             | 10'440      |  |
| ZH                | 94            | 4                    | 110          | 9'900            | 5'600             | 15'500      |  |
| GEISDC            | 3             | 1                    | 110          | 220              |                   |             |  |
| GE Theory         | 8             | 0                    | 110          | 880              | 5'600             | 12'860      |  |
| GE                | 59            | 3                    | 110          | 6'160            |                   |             |  |
| BE Theory         | 38            | 1                    | 110          | 4'070            | 3 000             | 13'960      |  |
| BE                | 41            | 2                    | 110          | 4'290            | 5'600             | 12,060      |  |
| BS Theory         | 7             | 2                    | 110          | 550              | 2 000             | 3 320       |  |
| BS                | 7             | 0                    | 110          | 770              | 2'000             | 3'320       |  |
|                   | Total members | Members <sup>1</sup> | contribution | contributions    | Institutional fee | Grand total |  |
|                   |               | Honorary             | Individual   | Total individual |                   |             |  |

<sup>&</sup>lt;sup>1</sup> Honorary members are not subject to the annual membership fee (CHIPP Bye-Laws, Article 1.2).
The numbers in this column are subtracted from the number of total members for the fee calculation.



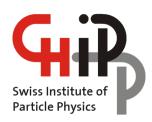
|                                      | Budget    | Budget    | Budget  | Budget  | Financial Plan |         |         |
|--------------------------------------|-----------|-----------|---------|---------|----------------|---------|---------|
|                                      |           | (approved |         |         |                |         |         |
| EXPENDITURE                          | 2017 rev. | 2018      | 2018    | 2019    | 2020           | 2021    | 2022    |
| Total expenses                       | 128'728   | 152'800   | 144'484 | 149'600 | 148'800        | 148'800 | 148'800 |
| Membership fees                      | 6'450     | 6'800     | 6'784   | 6'800   | 6'800          | 6'800   | 6'800   |
| Membership in SCNAT                  | 3'150     | 3'500     | 3'206   | 3'500   | 3'500          | 3'500   | 3'500   |
| Membership in IPPOG                  | 3'300     | 3'300     | 3'578   | 3'300   | 3'300          | 3'300   | 3'300   |
| Schools & Conferences                | 14'446    | 29'000    | 23'900  | 26'300  | 24'000         | 24'000  | 24'000  |
| CHIPP PhD School (SCNAT+CHIPP)       | 14'446    |           |         | 14'300  |                | 12'000  | 12'000  |
| PhD/PostDocs days                    |           |           |         |         |                |         |         |
| Zuoz (SCNAT+CHIPP)                   |           | 12'000    | 10'000  |         | 12'000         |         |         |
| SWICH (SCNAT+CHIPP)                  |           | 17'000    | 13'900  |         | 12'000         | 12'000  | 12'000  |
| PSI Workshop (SCNAT+CHIPP)           |           |           |         | 12'000  |                |         |         |
| reserve                              | 0         | 0         | 0       | 0       | 0              | 0       | 0       |
| Communication & Outreach             | 31'041    | 31'000    | 32'000  | 31'000  | 31'000         | 31'000  | 31'000  |
| EPPCN (parts from SERI+CERN)         | 20'000    | 20'000    | 20'000  | 20'000  | 20'000         | 20'000  | 20'000  |
| Dialogue (parts from SCNAT)          | 11'041    | 10'000    | 12'000  | 10'000  | 10'000         | 10'000  | 10'000  |
| copies/mail/phone                    |           | 1'000     | 0       | 1'000   | 1'000          | 1'000   | 1'000   |
| CHIPP Prize                          | 3'000     | 4'500     |         |         |                |         |         |
| Prize money                          |           | 3'000     | 3'000   | 3'000   | 3'000          | 3'000   | 3'000   |
| travel expenses                      |           | 1'500     | 0       | 1'500   | 1'500          | 1'500   | 1'500   |
| CHIPP Meetings                       | 338       | 2'000     |         | 2'000   |                |         |         |
| CHIPP Meetings  CHIPP Board Meetings |           | 700       | 300     | 700     | 700            | 700     | 700     |
| CHIPP EB Meetings                    |           | 300       | 300     | 300     | 300            | 300     | 300     |
| CHIPP Plenary (invited speakers,     | 110       | 000       | 000     | 000     | 000            | 000     | 000     |
| Administrator, sceretariat)          | 15        | 1'000     | 200     | 1'000   | 1'000          | 1'000   | 1'000   |
| Operations                           | 73'375    | 78'000    | 78'000  | 79'000  | 79'000         | 79'000  | 79'000  |
| salary, social charges, pension      | 72'200    | 77'000    | 77'000  | 78'000  | 78'000         | 78'000  | 78'000  |
| travel and other expenses            | 1'175     | 1'000     | 1'000   | 1'000   | 1'000          | 1'000   | 1'000   |
| Miscellaneous                        | 78        | 1'500     | 0       | 0       | 1'500          | 1'500   | 1'500   |
| INCOME                               |           |           |         |         |                |         |         |
| Total income                         | 127'680   | 130'220   | 133'780 | 135'800 | 137'000        | 137'000 | 137'000 |
| contributions from CHIPP me          |           |           |         | 82'000  |                |         |         |
| contribution from SCNAT              | 21'400    |           |         | 33'800  |                |         |         |
| for CHIPP School                     |           |           |         | 10'300  |                |         |         |
| for Zuoz                             |           | 8'000     | 8'000   |         | 10'000         | 10'000  | 10'000  |
| for Workshops (SWAPS / SWHEPPS)      |           | 11'000    | 11'000  | 10'000  | 10'000         | 10'000  | 10'000  |
| for Outreach (MAP)                   | 10'400    | 7'000     | 12'000  | 10'000  | 6'000          | 6'000   | 6'000   |
| for Outreach (webportal, not         |           |           |         |         |                |         |         |
| MAP)                                 | 0         | 0         | 0       | 0       | 4'000          | 4'000   | 4'000   |
| for IPPOG                            | 3'000     | 3'300     | 3'300   | 3'500   | 3'000          | 3'000   | 3'000   |
| contributions from CERN              | 5'000     | 5'000     | 5'000   | 5'000   | 5'000          | 5'000   | 5'000   |
| for EPPCN                            | 5'000     | 5'000     | 5'000   | 5'000   | 5'000          | 5'000   | 5'000   |
| contributions from SERI              | 15'000    | 15'000    | 15'000  | 15'000  | 15'000         | 15'000  | 15'000  |
| for EPPCN                            | 15'000    | 15'000    | 15'000  | 15'000  | 15'000         | 15'000  | 15'000  |
| other contribution                   | 2'500     | 0         | 0       | 0       | 0              | 0       | 0       |
| BALANCE                              |           |           |         |         |                |         |         |
| Balance                              | -1'048    | -22'580   | -10'704 | -13'800 | -11'800        | -11'800 | -11'800 |
| Asset at start of the year           | 57'034    | 55'986    |         | 45'282  |                | 19'682  | 7'882   |
| and the search of the Year           | 07 004    | 00 000    | 00 300  | 70 202  | 01702          | 10 002  | 1 002   |



### Votes for Budget 2019 ...

abstention:

favor:


against:

Mikko Laine

Bernd Krusche

Stefano Pozzorini

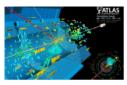
Susanne Reffert





Fundamental physics and precision experiments with muons, pions, kaons, neutrons, antiprotons and other particles

- Low energy precision tests of the Standard Model
- · Searches for permanent electric dipole moments
- · Exotic atoms and molecules
- Searches for symmetry violation and new forces
- Precision measurements of fundamental constants
- Advanced muon and ultracold neutron sources.






#### **Organising Committee:**

Klaus Kirch Bernhard Lauss Stefan Ritt Adrian Signer

Follows PSI2013 and PSI2016, expect 150 participants, all talks plenary, poster session



29.08.2018 | CHIPP | Medienmitteilung | Meldung

#### Long-sought decay of Higgs boson observed

Geneva, 28 August. Six years after its discovery, the Higgs boson has at last been observed decaying to fundamental particles known as bottom quarks. The finding, presented today at CERN by the ATLAS and CMS collaborations at the Large Hadron Collider (LHC), is consistent with the...



29.08.2018 | CHIPP | Medienmitteilung | Meldung

#### Claudia Tambasco mit CHIPP-Preis 2018 ausgezeichnet

Damit Physikerinnen und Physiker am CERN ihre Experimente zum Verständnis der Materie durchführen können, muss der grosse Teilchenbeschleuniger LHC mit höchster Präzision betrieben werden. Diese Präzision gegenwärtig und auch in Zukunft zu gewährleisten – das war das übergeordnete Ziel...

#### CHIPP Winter School of Particle Physics 2019

#### 20-25 January 2019

Europe/Zurich tilliezor

#### Overview

Scientific Program

Timetable

Participant List

Lodging and travel

Previous schools

#### Support

roellin@physik.uzh.ch

The Swiss Institute for Particle Physics (CHIPP) hosts an annual winter school based on the activities of the swiss institutes involved in particle and astro-particle physics. The purpose of the school is to offer young physicists an opportunity to learn about recent advances in elementary-particle physics from local and world-leading researchers. The school program includes lectures on accelerator and non-accelerator particle physics (detectors, LHC physics, neutrinos, astrophysics, flavor physics, future facilities) from an experimental and phenomenological perspective.

The school is open to both swiss and international young physicists. PhD students are especially encouraged to attend.

The 2019 CHIPP winter school of particle physics will be in Hotel Bellevue Terminus in Engelberg.

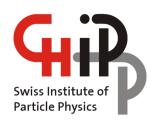
Registrations will open in September 2018.

The event is kindly supported by the Swiss Institute of Particle Phsyics and the Swiss Academy of Sciences

#### European Laboratory for Particle Physics



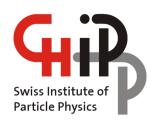
International Particle Physics Outreach Group


HOME | ABOUT | MEMBERS | RESOURCES | MASTERCLASSES | IPPOG NI PARTICLES4U

#### The International Particle Physics Outreach Group (IPPOG)

IPPOG is a network of scientists, science educators and communication specialists working across the globe in informal science education and outreach for particle physics. Particle physics is the science of matter, energy, space and time. IPPOG brings new discoveries in this exciting field to young people and conveys to the public that the beauty of nature is indeed becoming understandable from the interactions of its most fundamental parts - the elementary particles.

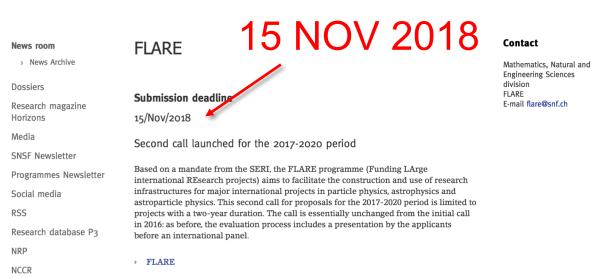
Current members come from the 22 member states of CERN, Brazil, Australia, Ireland, Slovenia, South Africa, the USA, and from DESY, CERN, five of the major experiments at the Large Hadron Collider (LHC), and the Belle il experiment at KER's SuperfixER accelerator in Japan.


Hans Peter Beck (University of Bern) and Steve Goldfarb (University of Melbourne), IPPOG Chairs

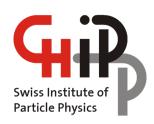


## Agenda item 6: FLARE funding requests

### Presentation for discussion: Tatsuya Nakada


- ▶ Funding available for 2017-2020 period (physics+astronomy): 32 M
- Funding already granted: 18.7 M (physics) + 2.9 M (astronomy)
- Astronomy if 20% (2017-2020) → ~5M

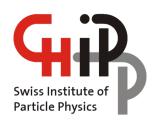



FLARE panel: 29-30 January 2019: RESERVE THE DAY
the Pls may be invited to make a presentation
as the last year








"The FLARE program aims at facilitating the development, construction, maintenance and operation of research infrastructures for major international experiments in particle physics, ground based astrophysics and astroparticle physics." → space based astroparticle experiments are not eligible for the FLARE funding

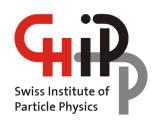


## Agenda item 7: Computing steering board

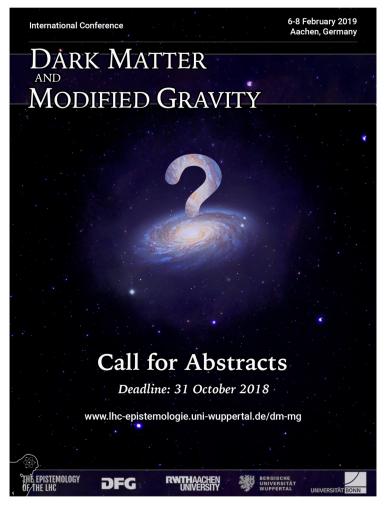
#### **Presentation for discussion**

Christoph Grab




## Agenda item 8: CHIPP plenary meeting 2019







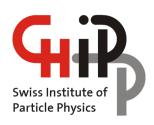

http://hotel-victoria.ch/



### Next to come ...






31 October 2018
Planetarium Luzern



### Agenda item 9: Status of new professorships

### New professorships at CHIPP institutes

- report from each institute:
  - Basel
  - ▶ Bern
  - Geneva
  - Zurich
  - ▶ EPFL
  - ▶ ETHZ
  - PSI



## Agenda item 22: A.O.B.

News from the community?
 Any news or announcement to be communicated?