

Forests in a Greenhouse Atmosphere: Predicting the Unpredictable?

Harald Bugmann

Forest Ecology
Institute for Terrestrial Ecosystems (ITES)
Department of Environmental Sciences, ETH Zürich

Overview

- The nature of the problem
- Models for simulating long-term forest dynamics
- The power of data:
 Testing models forest inventories
- The power of models:
 Upscaling of information the vanishing CO₂ effect
- Conclusions

The nature of the problem

"Predict"?

Merriam-Webster Dictionary (http://www.m-w.com):

- Predict implies inference from facts or accepted laws of nature: <astronomers predicted an eclipse>
- Forecast
 adds the implication of anticipating eventualities and differs from
 predict in being usually concerned with <u>probabilities</u> rather than
 <u>certainties</u>, i.e. it indicates that something is likely to occur:
 <forecast snow>
- Projection
 an estimate of future possibilities
- Scenario
 an account or synopsis of a possible course of action or events

Forests don't fit into greenhouses

Forests don't fit into greenhouses

Models for projecting long-term (>100 yrs) forest dynamics

Forest succession models: approach

- Concept of small-scale mosaic of successional patches (Gleason, Botkin, Shugart): so-called "Gap model"
- Quantitative description of tree population dynamics:
 - Establishment
 - Growth
 - Mortality
- Sensitive to climatic factors
- Here: FORCLIM model, stand-scale (≈ a few hectares)

Criteria for model construction

- As complicated as real forests? No...
- As simple as possible? Yeah... but... how simple is that??
- The concept of allometric relationships:

Forest succession models: growth

• Volume change of a tree:

$$dV/dt = \underbrace{r \cdot L}_{\text{Photosynthesis Respiration}}$$

Allometric relationships
 (D = tree diameter at breast height):

$$L = f_1(D)$$

$$V = f_2(H,D)$$

$$H = f_3(D)$$

• ...from which follows (after some math):

$$\frac{d\mathbf{D}}{d\mathbf{t}} = g \cdot \mathbf{D} \cdot (1 - \frac{\mathbf{H}}{H_{max}}) \cdot \underbrace{\frac{1}{\mathbf{b}(\mathbf{D})}}_{\text{allometry environment}} \cdot f(\mathbf{e})$$

Towards higher model accuracy

- Height-diameter allometry
 Case study Swiss National Park (Risch et al. 2005)
- Self-pruning in dense stands
 Case study Stotzigwald UR (Wehrli et al. 2005)
- Autecological parameters: height, drought response
 Case study Valais (Weber et al. 2007)
- More self-pruning & browsing response
 Various case studies (Didion et al. 2009)
- Tree mortality
 Various case studies (Heiri 2009)
- Forest management
 Various case studies (Rasche ongoing)

The power of data

Rigorous tests of the models are needed...

- Long-term Growth-and-Yield plots (Swiss Federal Res. Institute WSL)
 - 50+ stands
 - Partly dating back to 19th century
 - Inventories every 5-15 yrs
 - Mostly (strongly) managed stands
 - Tree positions known
 - Small, uniform plots

- Network of Swiss forest reserves (ETH Zurich, WSL)
 - 48 reserves
 - Dating back to 1950s
 - Inventories every 5-15 yrs
 - Unmanaged for 50+ yrs
 - Tree positions unknown
 - Small permanent plots
 - Full cruises on larger areas (compartments)

http://www.wsl.ch/forschung/forschungsunits/ walddynamik/waldwirtschaft http://www.waldreservate.ch

Model test against Growth-and-Yield data

Model test against Growth-and-Yield data

The power of models

"Grow fast, die young"

- Study of growth rate vs. longevity:
 - 3 species
 - 2 continents
- Negative exponential relationships: slope α in range [-0.35...-0.64]
- Implications?
 e.g. CO₂ fertilization,
 long-term forest
 dynamics & biomass?

Bigler & Veblen (2009), Oikos

Generalizing the finding

 Data on maximum growth rate (at young age) and maximum longevity of 141 temperate & boreal species

• Slope α (scaled to Bigler & Veblen units): [-0.31...-0.61]

Bugmann & Bigler (under revision)

Forest succession models: mortality

- Combination of
 - "background" mortality that is constant across tree life, tied to maximum tree age kA_m): small fraction of trees survives to kA_m ("age-independent" mortality = AIM)
 - growth-related mortality ("stress-related" mortality = SM)
- · Overall effect:

- CO₂ fertilization:
 - Reduced SM (higher growth rate)
 - Higher AIM (reduced longevity)

Bugmann (2001), Clim. Change

Exploring the effect using FORCLIM

- Net effect of growth stimulation vs. reduced longevity unknown
- Simulation study at 6 sites along climate gradient

Davos, change in total aboveground biomass

Bugmann & Bigler (under revision)

Exploring the effect using FORCLIM

Results averaged over all sites (multi-species case):

All sites, multi-species, ∆biomass

Bugmann & Bigler (under revision)

Taken together...

 Lack of growth-longevity relationship (& emphasis on source limitation) explains strong CO₂ effects in the "mechanistic" global vegetation models

(Short term) reality – (long-term) artefact?

Cramer et al. (2001), GCB

Conclusions

- Estimating future forest dynamics is a challenge, but not a hopeless endeavor
- Seemingly "boring", old data (forest inventories) are invaluable for testing model behavior in the long term and along strong climate gradients ... and these data collection efforts must be maintained
- Selection of processes to be modeled is crucial and non-trivial
- Example CO₂: taking into account reduced longevity may well cancel any growth stimulation
- Few (if any) models of biosphere dynamics are taking this into account: we may overestimate the biospheric C sink in the 21st century