Soil hydrological monitoring for regional landslide early warning

Adrian Wicki¹, Manfred Stähli¹, Christian Hauck², Peter Lehmann³

¹Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf (Contact: adrian.wicki@wsl.ch)

²Department of Geosciences, University of Fribourg, ³Department of Environmental Systems Science, ETH Zurich

Motivation

- Forecast goodness of landslide early warning systems (LEWS) can be improved by including soil hydrological data (Mirus et al., 2018).
- Existing soil moisture data in Switzerland contains information on the imminent landslide danger (Wicki et al., in preparation).

This study aims to assess the...

- ... representativeness of **flat monitoring sites** for...
- ... sensitivity of **different sensor techniques** to detect...
- ... critical hydrological conditions in hillslopes.

Approach

- Set-up of a soil wetness monitoring system at a landslide prone sloped and a flat site.
- Characterization of the **tem**poral soil wetness variability.
- Assessment of the potential to identify critically saturated conditions.

Electrical resistivity ERT profile lines (only at sloped site)

Matric suction Tensiometer

(T8, METER)

Vol. soil water content Soil moisture probe (5TE, METER)

A) Sample event

Fig. 1: Temporal evolution of air temperature and precipitation (a), as well as profile mean saturation and matric suction at the sloped (b-c) and flat site (d-e). Red lines and the shaded areas denote specific infiltration events.

B) Sloped vs. flat location

water level

Piezometer

lemporary ground

Fig. 2: Sloped vs. flat site saturation (left) and matric suction (right). The color denotes the number of records.

C) Saturation vs. matric suction

Fig. 3: Saturation vs. matric suction of each infiltration event for the event properties antecedent (left) and max (right).

- 1) Temporal variation is similar at the sloped and flat location. Values converge at saturated conditions.
- 2) Tensiometer measurements can help to further distinguish the degree of saturation mainly for antecedent conditions.

