Stream temperature and discharge evolution over the last 50 years in Switzerland

Tristan Brauchli¹,2,3, Adrien Michel ${ }^{4,5}$, Michael Lehning ${ }^{4,5}$, Bettina Schaefli ${ }^{1,3}$, Hendrik Huwald ${ }^{4,5}$

${ }^{1}$ Institute of Earth Surface Dynamics, University of Lausanne, Switzerland
${ }^{2}$ Centre de Recherche sur l'Environnement Alpin (CREALP), Sion
${ }^{3}$ Institute of Geography, University of Bern, Bern
${ }^{4}$ School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Switze ${ }^{5}$ WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland

Alpine regime (ALP): The regime is strongly influenced by snow and glacier melt, which exhibits a pronounced annual cycle.

Downstream lake regime (DLA): Switzerland has many regulated lakes. As a result, downstream rivers are strongly influenced.
Regime strongly influenced by hydropeaking (HYP)
Storage facilities at high elevation impact the regime in the lowlands by release of cold water.

Methods

Seasonal signal removal

Using the Seasonal-Trend decomposition based on 'Loess' (STL) method [2], data vector Y_{i} is decomposed into:

$$
Y_{i}=T_{i}+S_{i}+R_{i}
$$

where T_{i} is the trend term, S_{i} the seasonal term and R_{i} the residual term

Linear regression

A linear regression is applied to de-seasonalized variables with the classical least squares estimation technique for the periods 1979-2018 and 1999-2018.
Ecological indicator
The stream temperature must be smaller than $25^{\circ} \mathrm{C}$ for water intake and release in rivers (legal limit). We computed the number of days per year when this threshold is exceeded as an indicator.

Results

Stream temperature and discharge

- A warming trend is visible in most rivers
- Differences in decadal temperature anomalies are significant (except between the 70's and the 80's)
- The "end-of-80's" shift isn't visible everywhere and the warming continues after this shift (contrary to [3])

- No trend on the long-term for mean discharge
- A negative trend is visible since 2000 but its reason is hard to infer (climate change, natural variability)

Water temperature and discharge trends for the period 1999-2018 classified upo the 4 hydrological regimes, the basin area, mean elevation and glacier coverage

- Trends clearly depend on the hydrological regime

1. Positive RWT trends are smaller for ALP and HYP
2. Discharge decreases are less pronounced for ALP and HYP

- Glacier melt acts as a buffer in high-elevation basins

	$1979-2018$	$1999-2018$
Water temp. [${ }^{\circ} \mathrm{C} /$ decade]	$+0.33 \pm 0.03$	$+0.37 \pm 0.11$
Air temp. [${ }^{\circ} /$ decade]	$+0.46 \pm 0.03$	$+0.39 \pm 0.14$
Discharge [\%]	$-3.0 \pm 0.5 \%$	-10.1 ± 4.6
Precipitation [\%]	$-1.3 \pm 0.5 \%$	-9.3 ± 3.4

Effect of lakes

Lakes act as buffers: the outlet trend is almost equal to the collocated air temperature whatever the inflow trend

Alpine streams

On the long-term, a shift of the thermal and hydrological regimes of alpine catchments is evident.

Left: Hydrological (top) and thermal (bottom) regimes per decade for the Lonza river in Blatten averaged for each day of the year (DOY). Right: Decadal temperature plotted against decadal discharge

Ecological indicator

There is a noticeable increase in warm water events in the last decades:

- Extreme years $(2003,2018)$ are clearly visible
- Often linked to a discharge deficit in the 70's and 80's
- This is not necessarily the case anymore in the last decades (1994, 2007 and 201)
- Swiss river system is becoming more sensitive to extreme temperature events

Conclusion

- Strong evidence that climate warming has a clear influence on the stream temperature and discharge
- For the period 1999-2018, the mean warming rate is $+0.37^{\circ} \mathrm{C}$ per decade (around 95% of the air temperature warming rate)
- Snow and glacier melt are creating resilience to warming in high alpine stream. This resilience is however likely to reduce in the near future due to expected further decreases in future snow and glacier cover.

References

[1] Michel, A., Brauchli, T., Lehning, M., Schaefli, B., \& Huwald, H.: Stream temperature evolution in Switzerland over the last 50 years, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-366, accepted on the $20^{\text {th }}$ of November 2019, 2019.

2] Cleveland, R. B., Cleveland, W. S., E McRae, J., and Terpenning, I.: STL: A Seasonal-Trend Decomposition Procedure Based on Loess,Journal of Official Statistics, 6, 3-33, 1990.
[3] Hari, R. E., Livingstone, D. M., Siber, R., Burkhard-Holm, P., and Güttinger, H.: Consequences of climatic change for water temperature and brown trout populations in Alpine rivers and streams, Global Change Biology, 12, 10-26, 2006.

