Stream temperature and discharge evolution over the last 50 years in Switzerland

Tristan Brauchli^{1,2,3}, Adrien Michel^{4,5}, Michael Lehning^{4,5}, Bettina Schaefli^{1,3}, Hendrik Huwald^{4,5}

- stitute of Earth Surface Dynamics, University of Lausanne, John Centre de Recherche sur l'Environnement Alpin (CREALP), Sion ³ Institute of Geography, University of Bern, Bern ⁴School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzer and Avalanche Research SLF, Davos, Switzerland 5 MISL Institute for Snow and Avalanche Research SLF, Davos, Switzerland

General context

- River water temperature (RWT) and discharge are crucial variables of freshwater ecosystems
- River systems are complex and react non-linearly to perturbations
- Impacts of climate change are already visible

Goals: investigate the **evolution of stream temperature** and discharge in Switzerland since the beginning of

by snow and glacier melt, which exhibits a pronounced annual cycle.

Downstream lake regime (DLA): Switzerland has many regulated lakes. As a result, downstream rivers are strongly influenced.

Regime strongly influenced by hydropeaking (HYP):

Storage facilities at high elevation impact the regime in the lowlands by release of cold water. 7 Rhe-Rhe 28 Rho–Cha 0 Rho–Si 50 Sih–Bla 51 Tos-Fre 🔳 DLA 📕 SPJ Homog. station Normal station

Methods

Seasonal signal removal

Using the Seasonal-Trend decomposition based on 'Loess' (STL) method [2], data vector Y_i is decomposed into:

$Y_i = T_i + S_i + R_i$

where T_i is the trend term, S_i the seasonal term and R_i the residual term.

automatic measurement networks.

52 gauging stations were selected with data since the **1900's for discharge** and the **1960's for river water** temperature (for the oldest).

The basins were classified in four **hydrological regimes**:

Swiss Plateau and Jura regime (SPJ): The response is driven by precipitation and evapotranspiration with a moderate annual cycle in discharge.

Linear regression

A linear regression is applied to de-seasonalized variables with the classical least squares estimation technique for the periods **1979-2018** and **1999-2018**.

Ecological indicator

The stream temperature must be smaller than 25°C for water intake and release in rivers (legal limit). We computed the number of days per year when this threshold is exceeded as an indicator.

Results

Stream temperature and discharge

- A warming trend is visible in most rivers
- Differences in decadal temperature anomalies are significant (except between the 70's and the 80's)
- The "end-of-80's" shift isn't visible everywhere and the warming continues after this shift (contrary to [3])

4		Water station abbreviation
		Gla-Wuh Lan-Rog Gla-Rum Onz-Hei Lim-Bad Sag-Wor Gla-Rhe Aar-Rin Rhe-Rhe Kem-Emr Aar-Bru Tos-Ram Reu-Luz Chr-Kra

Water temperature and discharge trends for the period 1999-2018 classified upon the 4 hydrological regimes, the basin area, mean elevation and glacier coverage.

Alpine streams

On the long-term, a shift of the thermal and hydrological regimes of alpine catchments is evident.

- No trend on the long-term for mean discharge
- A negative trend is visible since 2000 but its reason is hard to infer (climate change, natural variability)

- Trends clearly depend on the hydrological regime
 - Positive RWT trends are smaller for ALP and HYP
 - 2. Discharge decreases are less pronounced for ALP and HYP
- Glacier melt acts as a buffer in high-elevation basins

	1979-2018	1999-2018
Water temp. [°C/decade]	+0.33±0.03	+0.37±0.11
Air temp. [°C/decade]	+0.46±0.03	+0.39±0.14
Discharge [%]	-3.0±0.5%	-10.1±4.6
Precipitation [%]	-1.3±0.5%	-9.3±3.4

Effect of lakes

Arv–Gva

Inn-Sch

SPJ

Left: Hydrological (top) and thermal (bottom) regimes per decade for the Lonza river in Blatten averaged for each day of the year (DOY). Right: Decadal temperature plotted against decadal discharge.

Ecological indicator

There is a noticeable increase in warm water events in the last decades:

- Extreme years (2003, 2018) are clearly visible
- Often linked to a discharge deficit in the 70's and 80's
- This is not necessarily the case anymore in the last decades (1994, 2007 and 201)
 - Swiss river system is becoming more sensitive to extreme temperature events

Conclusion

- Strong evidence that climate warming has a **clear influence on the stream** temperature and discharge
- For the period 1999-2018, the mean warming rate is +0.37 °C per decade (around 95 % of the air temperature warming rate)
- **Snow and glacier melt are creating resilience to warming** in high alpine stream. This resilience is however likely to reduce in the near future due to expected further decreases in future snow and glacier cover.

References

[1] Michel, A., Brauchli, T., Lehning, M., Schaefli, B., & Huwald, H.: Stream temperature evolution in Switzerland over the last 50 years, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-366, accepted on the 20th of November 2019, 2019.

[2] Cleveland, R. B., Cleveland, W. S., E McRae, J., and Terpenning, I.: STL: A Seasonal-Trend Decomposition Procedure Based on Loess, Journal of Official Statistics, 6, 3–33, 1990.

[3] Hari, R. E., Livingstone, D. M., Siber, R., Burkhard-Holm, P., and Güttinger, H.: Consequences of climatic change for water temperature and brown trout populations in Alpine rivers and streams, Global Change Biology, 12, 10–26, 2006.

