

1

- Introduction
- Study sites
- Methods
- Results
- Discussion and conclusion

Mass movements In the Alps

Mass movements and climate

- Changing climate is thought to impact the frequency and magnitude of mass-movement processes.
- Impacts are expected to be particularly acute in mountain regions.
- Spectacular rockfalls occurred during the summer heat of 2003, massive debris flows happened in August 2005.
- Occurrence of various mass-movement events beyond historical experience.

- Introduction
- Study sites
- Methods
- Results
- Discussion and conclusion

- Introduction
- Study sites
- Methods
- Results
- Discussion and conclusion

Dendrogeomorphic sampling

Stoffel and Bollschweiler, 2008, Nat Hazard Earth Syst Sci 8

- Introduction
- Study sites
- Methods
- Results
- Discussion and conclusion

Ritigraben torrent, Swiss Alps

387 2005, Arct Antarct Alp Res 37: al., et Stoffel

Ritigraben torrent, Swiss Alps

10 events recorded in archives since 1922

24.09.1993: 60'000 m³

"increase in debris-flow frequency since 1987"

"no events during LIA and between 1850 and 1922 "

(NRP 31)

Case-study site Ritigraben

Geomorphic mapping

al., 2008 Global Planet Change 60: 228 Stoffel et

Case-study site Ritigraben

Sampling: 2450 increment cores from 1102 conifer trees

124 events identified between AD 1570 and 2008

Stoffel & Beniston, 2006 Geophys Res Letter 33: L16404

Case-study site Ritigraben

Sampling: 2450 increment cores from 1102 conifer trees

124 events identified between AD 1570 and 2008

Stoffel & Beniston, 2006 Geophys Res Letter 33: L16404

Seasonality of debris flows

Stoffel & Beniston, 2006 Geophys Res Letter 33: L16404

Debris-flow deposits (where?)

Debris-flow deposits (where?)

Stoffel et al., 2008 Global Planet Change 60: 228

Magnitude-frequency relationship

Return periods of events

S = pluriannual

M = subdecadal

L = decadal

XL = multidecadal

Source-to-sink processes

© 2014 Markus Stoffel Universities of Geneva and Bern

Introduction

Study site

Methods

Results

Conclusions

Source-to-sink processes

202 73: Global Planet Change Stoffel, 2010 ∞ ngon

Triggers and future evolution in debris-flow activity

Schneuwly-Bollschweiler and Stoffel., 2012. J Geophys Res

Stoffel et al., 2014. Clim Change

Regional debris-fow frequency

Universities of Geneva and Bern

Introduction

Study site

Methods

Results

Conclusions

Future perspectives

Plattje

Täschgufer, V

Täschgufer

Rockfall frequency (how often?)

Dated injuries: 786 for the period 1394–2002 Rockfall occurs in the form of **isolated rocks and boulders**...

Stoffel et al., 2005 Geomorphology 68: 224

Rockfall magnitude (how much?)

... only one high magnitude – small frequency event dated to 1720 AD

11 trees injured, 13 trees with growth release after 1721, every forth tree growing up between 1725 and 1759

© 2014 Markus Stoffel
Universities of Geneva and Bern

Rockfalls and MSAT

The illustration on climate-rockfall interactions has been removed as this is work in review. Please check Nature Geosciences or dendrolab.ch web sites

Stoffel et al., in prep Nature Geoscience

- Introduction
- Study sites
- Methods
- Results
- Discussion and conclusion

Conclusions

- Unusually dense records of rockfall or debris-flow activity at periglacial sites spanning several centuries.
- Reconstructed time series represent «real» changes in activity.
- Periglacial rockfall (in terms of frequency) is driven clearly by temperature; debris flows show mixed reactions.
- Debris flows unless driven by huge sediment input from unstable permafrost bodies – will not necessarily occur more frequently, but with larger magnitudes.
- CC impacts on rockfall and debris flows are clearly visible in periglacial environments, but not at lower elevations.

Characteristics of debris-flow classes

Characteristics	S	M	L	XL
travel distance	1630 m	1600 m*	1560*	1080
spread	low	low	medium	large*
seasonality	JAS	JJAS	JJAS	AS
precipitation	convective	convective	adv. / conv.	advective
block sizes (Ø)	< 0.5 m	0.5–1 m	0.5–1 m	1–2 m
events	26	20	14	3
magnitude (m³)	10 ² –10 ³	10 ³ -5×10 ³	5×10 ³ –10 ⁴	10 ⁴ –5×10 ⁴

⇒ size determination for 63 events since AD 1860 (S, M, L, XL)

Characteristics of debris-flow classes

