

EPFL

eSpace EPFL Space Center

https://espace.epfl.ch/ https://www.epfl.ch/labs/lastro/

Adrien SAADA Research Scientist

Space Sustainability Rating Operation Officer

Space sustainability Rating Association, Hosted at eSpace - EPFL Space Center

Stephan Hellmich

Post-doc Research Scientist Co-Head of the Sustainable Space Hub LASTRO

Mathieu Udriot Research Scientist Co-Head of the Sustainable Space Hub eSpace - EPFL Space Center

EPFL Who are we?

Adrien Saada

Operations Officer Space Sustainability Rating

SPACE SUSTAINABILITY RATING

EPFL Who are we?

eSpace
EPFL Space
Center

Why do we need space?

CLIMATE CHANGE

U

<u>و</u>

opernicus

111

MARINE MONITORING.

ATMOSPHERE MONITORING

LAND MONITORING

SECURITY

EMERGENCY MANAGEMENT

Sustainability in Space?

The debris situation

eSpace

Center

EPFL Space

Sustainable

Space Hub

EPFL The debris situation

3,200 satellites in orbit

Sustainable

Space Hub

eSpace

Center

EPFL Space

- 9,000 to be launched until 2027
- Approval pending for 30,000 more

Number of cumulative collisions in LEO (simulated) ESA: Annual Space Environment Report 2022

- 640+ satellites in orbit
- Generation 2 incoming

3276 satellites to be launched

36,500

Debris greater than 10 cm in size in 2022 (1)

Debris greater than 1 cm in size in 2022 (1)

Source: ESA, Space Environment Statistics

Source: ESA, effects of hypervelocity impacts

If we continue business as usual, some orbits around Earth may become inaccessible within the next few decades.

Sustainability of Space activities?

EPFL Impacts of space activities on Earth

- Health risks due to toxic, carcinogenic propellant¹
- Ground casualty risks (eg. Titanium tank)
- Unknown impacts on atmosphere and oceans

https://www.smithsonianmag.com

https://www.esa.int/

EPFL Impact on astronomy

1'100 Illuminated during astronomical twilight

about

1'600

Satellites in range of an observatory at midlatitude

250

above 30°

Wide-field imaging and spectroscopic surveys

1-5%

of the exposures ruined during beginning and end of the night Very wide-field imaging with large telescopes (e.g. LSST)

30%

of the exposures ruined during beginning and end of the night

O. R. Hainaut and A. P. Williams, "Impact of satellite constellations on astronomical observations with ESO telescopes in the visible and infrared domains", 2020, <u>10.1051/0004-6361/202037501</u>

Image Credit: Joshua Rozells

How can we foster space activities while sustaining the use of outer space in the long term?

EPFL Sustainable Space Hub

EPFL's competence group for new technologies and services to secre the long-term usability of space

Goal

Increase awareness of the debris situation in near-Earth space, study environmental impacts and develop tools to identify technology gaps and support sustainable mission design.

EPFL Three Pillar strategy

1. Measure

Filling the knowledge gaps about space objects

Analyse and quantify environmental risks and impacts of missions

3. Act

Include assessments in space mission design since the early phase

EPFL What do we need to measure?

- Total number and orbital distribution
 - Evaluation of the current situation
 - Risk assessment
 - Define mitigation measures

- Rotation states and physical properties
 - Support active space debris removal
 - Detect imminent fragmentation events
 - Study long-term effects of the space environment
- Effects of launches on the atmosphere
- Evaluation of impacts on society

EPFL Number, distribution and physical characteristics

- OmegaCAM @ ESO VLT Survey Telescope
 - 2.6 m Telescope on Cerro Paranal
 - 380k images

Sustainable

nace Hub

eSpace

Center

EPFL Space

- DECam @ Blanco Telescope
 - 4 m Telescope on Cerro Tololo
 - \circ 540k images

EPFL Physical characterization

Streak detection

 Develop methods to efficiently extract satellite observations

Identification, orbit determination

 Apply advanced orbit determination/fitting methods

Photometry

 Extract light curves from streaks to determine tumbling states

Observations

 0.6 m optical telescope (TELESTO) @ Observatory of Geneva, Sauverny

Globalstar M039 (~350 kg)

Bluewalker 3 (~1.5 t, 64m²)

magnitude 5 Star (visible by naked eye)

EPFL Pose estimation for active space debris removal

- 6D Pose estimation for previously unseen objects
- Domain generalization for pose estimation
- Learning compact networks for pose estimation

Reentry and hypervelocity impacts

- Number of reentries will increase
- Still a lot of uncertainties in models [1,2,3,4]
- Research on material demise (LPAC)
- Modelling hypervelocity impacts (LSMS)

[1] ESA CleanSpace blog, 2022

[2] SpaceNews article on environmental impacts of reentry, 2022

[3] Robert G. Ryan et alli, "Impact of Rocket Launch and Space Debris Air Pollutant Emissions on Stratospheric Ozone and Global Climate", (2022), in: Earth's Future, 10, e2021EF002612. <u>https://doi.org/10.1029/2021EF002612</u>.

[4] Jamie D. Shutler et alli, "Atmospheric impacts of the space industry require oversight", (August 2022), in: Nature Geoscience, volume 15, p. 598–600, <u>www.nature.com/naturegeoscience</u>.

Sustainable Space Hub

EPFL Sustainable Space Logistics

eSpace
EPFL Space
Center

https://www.esa.int/Enabling Support/Space Transportation/ESA sets sights on space transportation ecosystem

EPFL **Environmental Impacts assessment**

- - Identify environmental hotspots (LCA)
 - Help design trade-offs and decision-making
 - Identify knowledge gaps

https://act.dev.gsl.ateleris.com/

EPFL Pushing the frontier of space policy debate

'Space sustainability: Policy options and interrelations with Earth system governance'

- Consider impact of missions on Earth System and socioeconomic benefits for developing countries
- Co-construct future scenarios with practitioners to discuss policy options
- Evidence-based policy making through engagement with OECD Space Forum, ITU, etc.

Earth - Space Sustainability

- Integrating space and Earth-bound sustainability challenges through frontier social science research
- Embedded in the Earth System Governance global research alliance

Dr. Xiao-Shan Yap, Senior Researcher @ eSpace

TOWARDS A MORE SUSTAINABLE USE OF SPACE

A METRIC FOR SPACE SUSTAINABILITY

Encouraging space actors to design & implement sustainable & responsible space missions for the long-term sustainability of the space environment

A MODULAR RATING

REWARDING RESPONSIBLE BEHAVIOR IN SPACE

A rating system informed by transparent, data-based assessments of the level of sustainability of space missions

Practical guidance on how to **improve** sustainability performance & practices

A **platform for action-focused collaboration** centered on the rating system to support research and leverage best practices

HOW IS A MISSION RATED?

THE SSR DATA VERIFICATION ASSESSMENT

Level of verification	Factor
Assertion Affirmative statement by the applicant is provided, without supporting documentation	0.5
Technical documentation supporting the assertion Supporting technical documentation on the mission design is disclosed to the SSR entity	0.6
Public release of the technical documentation Supporting technical documentation is submitted to a government or non-profit available for public review	0.8
Authority – independent technical review An independent technical review or confirmation of compliance by a third-party technical expert is provided	1

Each information provided shall be associated with a confidence level

Number of satellites Positive Integer only Verification is a required field	
	Select a verification level 🗸
Mass (kg) (j Positive Float only Verification is a required field	Select a verification level N/A Assertion Assertion+Documentation Public Release Authority

HOW IS A MISSION RATED?

SPACE SUSTAINABILITY RATING	[Operator's logo]	
SPACE SUSTAINABILITY RATING		
CERTIFIC	ATE	
[Company and Mission Name], completed a rating and achieved a Gold Rating with Two Bonus Stars .		
Scope of certificate: [N	ission Phase]	
Date of issue	[Signature]	
[Date]	Prof. Jean-Paul Kneib Academic Director eSpace - EPFL Space Center	
This document is not an official certification and is valid duri This rating can be re-evaluated upon request of the applicant, or if it is deemed necessar	the [Mission Phase] of the assessed mission. by the issuer, This certificate is the property of Space Sustainability Rating.	

The SSR as an incentive tool

Sustainable Space Hub

SPACE SUSTAINABILITY RATING

eSpace EPFL Space Center

https://espace.epfl.ch/research/ssl/

spacesustainabilityrating.org

Thank you

Adrien Saada SSR Operations Officer

adrien.saada@ssr.space