Differential seasonal shifts: climate change leads to ecological relationship problems

Marcel E. Visser

Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW)

Blooming of cherry blossom over 1,200 years

Trendline is 50-year moving average

Phenology is temperature dependent

Phenology is temperature dependent

Global climate change leads to higher temperatures

Phenology is advancing

Shifts in phenology

Shifts in phenology

Thropic level

Thackeray et al. (2010) GCB; Visser & Both (2005) Proc R Soc B Phenology is temperature dependent

Global climate change leads to higher temperatures

Phenology is advancing

But not all phenology is advancing at the same rate

This leads to phenological mismatches

Climate change leads to ecological relationship problems

Roe deer Caribou

The vegetation shift its phenology (growing season) stronger than the phenology of roe deer, and of caribou (birth date)

The bees shift their phenology (flight date) stronger than the phenology of the orchid (flowering time)

Robbirt et al Curr Biol 2014

Andrena nigroaenea

Ophrys sphegodes

The phenology (arrival date) of the Barnacle Geese does not keep up with the advancement of the phenology of their food in their breeding grounds

Lameris et al. Current Biology 2018

The phenology (arrival date) of the American Robin shift stronger than date of snow melt

- 1. Why does climate change lead to differential shift in phenology?
- 2. Will populations adapt to climate change through evolutionary changes?
- 3. If populations do not adapt fast enough to climate change, will they decline?

A simplified food chain

Quercus robur

Bud burst

Ficedula hypoleuca

Egg hatching

Nestlings to feed

Why does climate change lead to differential shift in phenology?

Shifts in seasonal timing are unequal across trophic levels

Slope = -0.35 days / year

Slope = -0.69 days / year

Visser et al. (1998) Proc R Soc B

Climate change has led to a phenological mismatch

Visser et al. (1998) Proc R Soc B

Why does climate change lead to mismatches?

Why does climate change lead to mismatches?

Visser et al. (2021) Proc R Soc B

Why does climate change lead to mismatches?

Pied flycatchers arrive too late at the breeding gounds

Both & Visser (2001) Nature

Caribou's birth phenology depends on photoperiod

Post & Forchhammer (2008) Phil Trans B

Why does climate change lead to differential shift in phenology?

Differences in sensitivity to photoperiod and temperature

Differences in the temperature window that affects phenology, and windows warm up at different rates

Diffences in the rate of climate change in the wintering and breeding areas

Will populations adapt to climate change through evolutionary changes?

C.R. Darwin (1809–1882)

Variation, differences in fitness, and heredity leads to micro-evolution

Heritability of laying date = 0.17

Late laying birds have higher fitness

Early laying birds have higher fitness There is selection for early laying

Will there be evolutionary rescue?

Optimal reaction norm (*i.e.* perfect match between resource needs and resource availability) in three time periods:

1973-1987 1988-2001 2002-2016

Shift in elevation from period 1 to period 3 is 8.5 days

Will there be evolutionary rescue?

Will there be evolutionary rescue?

Ramakers et al. (2019) Evolution

Winter moth egg hatching phenology has genetically changed

Van Asch et al. (2012) Nature Climate Change

Field mustard's flowering phenology has genetically changed

Frank et al. (2007) PNAS

Will populations adapt to climate change through evolutionary changes?

The will be evolutionary changes as phenology is heritable and there is selection for earlier or later phenology

But the rate of this micro-evolution will be too slow to keep up with climate change

Rate of climate change is now 50 times faster than historical warming rates

If populations do not adapt fast enough to climate change, will they decline?

Individual mismatches lead to reduced number of offspring produced, a major component of fitness

Mismatches thus leads at the population level to a lower mean number of offspring produced

But this reduced number of offspring produced does not lead to lower population growth rates and lower population numbers

Population mismatch

This is because of density dependent recruitment rates

No change / Mild change / Medium change / Fast change

Pied flycatcher populations decline the most in early forests

Both et al. (2006) Nature

Caribou's calf production declines with phenological mismatch

Post & Forchhammer (2008) Phil Trans B

If populations do not adapt fast enough to climate change, will they decline?

Individual mismatches leads to reduced number of offspring produced which is a major component of fitness

Population mismatches lead to (slightly) lower mean number of offspring produced

Due to density dependent processes, this reduced number of offspring produced does not lead to lower population growth rates and lower population numbers

Overall conclusions: global climate change leads to ecological relationship problems

Climate change will lead to unequal shifts in phenology between species within a food chain

This will lead to selection on phenology but the rate of microevolution is often low, too low to keep up with climate change

Ecological processes such as density dependence may 'rescue' populations, within limits

Acknowledgements

All the people that contributed to the data collection over the past 68 years &

- Melanie Lindner
- Phillip Gienapp
- Irene Verhagen
- Jip Ramakers
- Veronika Laine
- Tom Reed
- Stephanie Jenouvrier

https://www.unep.org/res ources/frontiers-2022noise-blazes-andmismatches