

UNIVERSITÄT BEDN

OESCHGER CENTRE

Insights from paleo-climate modelling

Christoph C. Raible^{1,2}

- ¹ Climate and Environmental Physics, Physics Institute and
- ² Oeschger Centre for Climate Change Research, University of Bern, Switzerland

Outline

UNIVERSITÄT BERN

- Climate modelling
 - Definition
 - The problem
 - How?
- Paleo examples
 - Interpretation of proxy reconstructions
 - Process understanding: transition MCA -LIA
 - New reconstruction of the NAO
- Conclusions

Outline

UNIVERSITÄT BERN

- Climate modelling
 - Definition
 - The problem
 - How?
- Paleo examples
 - Interpretation of proxy reconstructions
 - Process understanding: transition MCA -LIA
 - New reconstruction of the NAO
- Conclusions

Definition

Model?

- > a composition of concepts
- a simplification of relevant aspects of a situation in the real world for its systematic study

Climate model?

Application of quantitative methods to simulate the interactions of the atmosphere, oceans, land surface, ice, etc.

The problem

OESCHGER CENTRE

Karl and Trenberth, (2003)

How???

Net solar

Clouds

(short-wave)

UNIVERSITÄT BERN

OESCHGER CENTRE
CLIMATE CHANGE RESEARCH

Schematic for Global Atmospheric Model

Horizontal Grid (Latitude-Longitude)

Net terrestrial

(long-wave)

Vertical Grid (Height or Pressure)

Reflection

Wind

Air-ocean

Limitations

UNIVERSITÄT BERN

- Not reality
- Model uncertainties
- Grid boxes have a certain resolution
- Parameterization sub grid procession clouds, turbule se, .
- Numerical implications

Limitations / Advantages

- Not reality
- Model uncertainties
- Grid boxes have a certain resolution
- Parameterization of sub grid processes like clouds, turbulence, ...
- Numerical implications

- Simplification on purpose
- Overcome limitations of temporal and spatial coverage
- More realizations of model reality possible (ensemble approach)
- Sensitivity experiments
- Predictions and projections

Outline

UNIVERSITÄT BERN OESCHGER CENTRE

- Climate modelling
 - Definition
 - The problem
 - How?
- Paleo examples
 - Interpretation of proxy reconstructions
 - Process understanding: transition MCA -LIA
 - New reconstruction of the NAO
- Conclusions

NAO reconstructions (only a selection)

OESCHGER CENTRE

Multi-model ensemble approach: Past

UNIVERSITÄT BERN

OESCHGER CENTRE
CLIMATE CHANGE RESEARCH

Reconstructed and simulated temperatures

What caused this?

UNIVERSITÄT BERN OESCHGER CENTRE

Medieval Quiet Period (MQP): ~950 - 1250 AD

Little Ice Age (LIA): ~1400 - 1700 AD

Hypothesis: NAO plays a role

OESCHGER CENTRE

Simulations disagree

UNIVERSITÄT BERN

OESCHGER CENTRE
CLIMATE CHANGE RESEARCH

UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

UNIVERSITÄT BERN

UNIVERSITÄT BERN

UNIVERSITÄT

BERN

OESCHGER CENTRE

OESCHGER CENTRE
CLIMATE CHANGE RESEARCH

→ new NAOmsxn

UNIVERSITÄT BERN OESCHGER CENTRE

Conclusion on NAO details - part I

- The suggested two proxy sites seems to be not sufficient to constrain the NAO
- Model simulations can serve to test reconstruction methods

Is a simple index definition of a mode adequate?

Outline

UNIVERSITÄT BERN OESCHGER CENTRE

- Climate modelling
 - Definition
 - The problem
 - How?
- Paleo examples
 - Interpretation of proxy reconstructions
 - Process understanding: transition MCA -LIA
 - New reconstruction of the NAO
- Conclusions

What caused this?

UNIVERSITÄT BERN OESCHGER CENTRE

Medieval Quiet Period (MQP): ~950 - 1250 AD

Little Ice Age (LIA): ~1400 - 1700 AD

UNIVERSITÄT BERN OESCHGER CENTRE

 $T42x1 \rightarrow 2.8^{\circ} (atm), 1^{\circ} (ocn)$

UNIVERSITÄT

Little Ice Age (LIA) - Medieval Climate Anomaly (MCA) 1450-1500 AD 1150-1200 AD

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARC

Little Ice Age (LIA) - Medieval Climate Anomaly (MCA) 1450-1500 AD 1150-1200 AD

Sea Ice Concentration [50%] — MCA

UNIVERSITÄT

Little Ice Age (LIA) - Medieval Climate Anomaly (MCA) 1450-1500 AD 1150-1200 AD

Temperature Anomaly [°C]

Sea Ice Concentration [50%] — MCA

UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARC

UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

MQP-LIA: feedbacks?

UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

UNIVERSITÄT BERN

$u^{\scriptscriptstyle b}$

LIA-MQP SST: support from proxies

UNIVERSITÄT BERN OESCHGER CENTRE

Hypothesis

OESCHGER CENTRE

Artificial sea ice growth

UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARC

SLP anomaly [hPa]
stippling = significant SLP anomaly
Sea ice concentration [50%] — CTRL
--- year 50-99

Artificial sea ice growth

UNIVERSITÄT **OESCHGER CENTRE**

stippling = significant SLP anomaly

Sea ice concentration [50%] — CTRL

--- year 50-99

35 Lehner et al. (2013)

Temperature Anomaly [°C]

$u^{\scriptscriptstyle \mathsf{b}}$

Conclusions: Forcing triggering

- Potential crucial role of sea ice in MQP-LIA transition (atmospheric circulation, temperature)
- Northern Europe proxies are affected
- Mechanism for MQP-LIA climate transition that does not need a significant shift in NAO
- Forcing might trigger internal feedbacks and lead to long lasting climate shifts

Outline

UNIVERSITÄT

BERN
OESCHGER CENTRE

- Climate modelling
 - Definition
 - The problem
 - How?
- Paleo examples
 - Interpretation of proxy reconstructions
 - Process understanding: transition MCA -LIA
 - New reconstruction of the NAO
- Conclusions

Can we do better than Trouet et al?

UNIVERSITÄT BERN

UNIVERSITÄT BERN OESCHGER CENTRE

39

 $\mathsf{NAO}_{\mathsf{mc}}$

Correlation

50yr running window

Is the new NAO index useful?

UNIVERSITÄT BERN

OESCHGER CENTRE
CLIMATE CHANGE RESEARCH

Is the new NAO index useful?

UNIVERSITÄT BERN

Conclusions III

BERN
OESCHGER CENTRE

- The multi-proxy approach delivers a better constraint NAO reconstruction than just using 2 proxy records
- Models may help in the selection of appropriate proxy records (additional model constraint)
- A prolonged positive phase of the NAO during the MCA is not found in the new reconstruction
- There is still room for improvement!

$u^{\scriptscriptstyle b}$

Take-home message

b UNIVERSITÄT BERN OESCHGER CENTRE

Models are useful tools to

- Identify important processes
- Help in the interpretation of proxy reconstruction
- Test reconstructions methods
- Assess climate variability (forced and unforced component)
- •