Global weirding or
insignificant change?

Extremes in a changing climate
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Global
weirding?



1-day rainfall maximum [mm/d]

Insignificant
change?
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Global weirding or
insignificant change?

Neither... we need to differentiate




Locally natural variability is very large

Daily precipitation in pre-industrial control run
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1-day rainfall maximum [mm/d]

Change or no change?

1-day precipitation maxima 1864-2016 (Chaumont)
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Climate models an ideal testbed

Annual 1-day rainfall maxima (rx1day) N Europe
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The butterfly effect

Annual 1-day rainfall maxima (rxl1day) N Europe
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The butterfly effect

Two realizations of exact same model
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The forced response

The underlying signal that determines return period
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Forced response determines probability
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1-day rainfall maximum [mm/d]

Erring on the side of least drama?

1-day precipitation maxima 1864-2016 (Chaumont)
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The score is 91:9 and 31:0
Trends in 1-day precipitation maxima 1901-2014
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The map of shame
Stations with complete daily rainfall data 1951-2010

Restricted data
access prevents
vital research




Less stringent — more data

Stations with reasonable daily rainfall availability




More increase than decrease in heavy precip

® significantly negative relationship with global mean temperature

@ significantly positive relationship with global mean temperature

® non-significant relationship with global mean temperature

Update of Westra et al. 2013
Fischer and Westra 2017, in prep



More increase than decrease

Histogram of «global» heavy rainfall trends

land fraction

Max 5-day accumulated
precipitation
(1960-2010)

2 observational datasets:

GHCNDEX
— HadEX2
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land fraction

Not to be expected by chance

Internal variability cannot explain the observed trends

@5% Expected by chance Max 5-day accumulated
(Control simulation) precipitation
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Consistent with Min et al. 2011, Nature, Zhang et al. (2013) GRL, and Westra et al. (2013) J Climate



Insignificant change?

No! Changes in heavy rainfall and

temperature extremes are
detected at global scale




Why? - Same weather
in @ warmer climate?




Heavy rainfall change consistent with theory

Precipitation in Europe scaled by Clausius-Clapeyron
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Extremes more robust than mean

Change in heavy Change in annual mean
precipitation precipitation
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Stippled area fraction: 73% Stippled area fraction: 27%

Stippled if 80% of CMIP5
models agree on sign of

forced response |
Fischer et al., 2014, GRL,

see also Kroner et al. 2016, Clim. Dyn for mean precip



Warming explains most changes in hot days

Change in number of hot days at 2°C global warming

3 Probability
2.5 ratio

Estimated 2°C shift

Global mean
ratio 7.5

Simulated 2°C warming
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Fischer and Knutti, 2015, Nature CC
Consistent with Cattiaux et al. (2016), Fischer and Schar (2010), Sillmann, Schaller et al. (2017), in prep



GEOPHYSICAL RESEARCH LETTERS. VOL. 39, L0680, doi:10.1029/2012GL051000, 2012

Evidence linking Arctic amplification to extreme weather

in mid-latitudes

Jennifer A. Francis' and Stephen J. Vavrus®

Received 17 January 2012; revised 20 February 2012; accepted 21 February 2012; published 17 March 2012,

[1] Arctic amplification (AA) — the observed enhanced
warming in high northern latitudes relative to the northern
hemisphere — is evident in lower-tropospheric temperatures
and in 1000-10-500 hPa thicknesses. Daily fields of 500 hPa
heights from the National Centers for Environmental Pre-
diction Reanalysis are analyzed over N. America and the
M. Atlantic to assess changes in north-south (Rosshy) wave
characteristics associated with AA and the relaxation of pole-
ward thickness gradients. Two effects are identified that
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Quasiresonant amplification of planetary w
and recent Northern Hemisphere weather

Vladimir Petoukhov™', Stefan Rahmstorf?, Stefan Petri®, and Hans Joachim Schellnhuber™®’
“Potsdam Institute for Climate Impact Research, D-14412 Potsdam, Germany; and "Santa Fe Institute, Santa Fe,
Contributed by Hans Joachim Schellnhuber, January 16, 2013 (sent for review June 15, 2012)

In recent years, the Northern Hemisphere has suffered several dev-
i ional such as the European

[3] Exploration of the atmospheric response to Arctic
change has been an active area of research during the past
decade. Both observational and modeling studies have
identified a variety of large-scale changes in the atmospheric
circulation associated with sea-ice loss and earlier snow
melt, which in tum affect precipitation, scasonal lempera-
tures, storm tracks, and surface winds in mid-latitudes [e.g.,
Budikova, 2009; Honda et al., 2009; Francis et al., 2009;
Cverland and Wang, 2010; Petoukhov and Semenov, 2010;

LET

GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 47344739, doi:10.1002/grl. 50880, 2013

Revisiting the evidence linking Arctic amplification to extreme

weather in midlatitudes

Elizabeth A. Bamnes'

Received 17 July 2013; revised 8 August 2013; accepted 14 August 2013; published 4 September 2013,

[1] Previous studies have suggested that Arctic ampli-
fication has caused planetary-scale waves to elongate
meridionally and slow down, resulting in more frequent
blocking patterns and extreme weather. Here trends in the
meridional extent of atmospheric waves over North America
and the North Atlantic are investigated in three reanaly-
ses, and it is demonstrated that previously reported posi-

hereafter) suggest that atmospheric Rossby waves have elon-
gated meridionally in recent decades due to Arctic amplifica-
tion. They hypothesize that these elongated waves propagate
more slowly and favor more extreme weather conditions.
They speculate that as the earth continues to warm, Arctic
amplification will increasingly influence the North Atlantic
atmospheric circulation, potentially causing more extreme
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I. Quasiresonance Hypothesis
Generally the large-scale midlatitude atmospheric circulation is

g and Winter Weather

LOBE OF THE POLAR VORTEX SAGGED SOUTHWARD OVER THE CENTRAL
States. All-time low temperature records for the calendar date were set
i Chicago [-16°F (-27°C), 6 January], at Central Park in New York [4°F
L and at many other stations (/). Since that event, several substantial snow
d the East Coast. Some have been touting such stretches of extreme cold
as evidence that global warming is a hoax, while others have been citing them as evidence that
global warming is causing a “global weirding”™ of the weather. In our view. it is neither.

temperate latitudes, It's an interesting idea,
but alternative observational analyses and
simulations with climate models have not
confirmed the hypothesis, and we do not
view the theoretical arguments underlying it
as compelling [see (3-6)].

Other studies have suggested that the loss
of Arctic sea ice may influence the atmo-
spheric circulation in mid-latitudes dur-
ing summer [e.g., (7)]. Sea-ice losses dur-

IMPACTS

news & views

Heated debate on cold weather

Erich M. Fischer and Reto Knutti

Arctic warming has reduced cold-season temperature variability in the northern mid- to high-latitudes. Thus, the

coldest autumn and winter days have warmed more than the warmest days, contrary to recent speculations.



Changes are complex but likely not inexistent
Observational evidence is affected by high variability
Many model runs are required to isolate a signal

Link between «meandering» and extremes is not

straight-forward







Dominant thermodynamics — higher confidence
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Confidence

The more dominant the

thermodynamic contribution —
the higher our confidence




Today’s changes in extremes —
nothing but simple warming?




Frequency

The prime example of an extreme

Average summer temperature at 4 Swiss stations
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Frequency

Projection becomes reality 1990-2016
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Today’s return period
What used to be a

1-in-50 year in the early 1990s
has become a in 1-in-5 year summer

Christidis et al. 2014, Nature CC



Return periods are sensitive

Return period of 1-day heavy rainfall in Ziirich
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Has the 30-yr event become a 20-yr event?

1-day return period for Zirich Fluntern
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Conclusions

Neither «global weirding» nor «insignificant change»

Large-scale changes in temperature and heavy rainfall

extremes are clear

Changes in atmospheric dynamics remain a major

uncertainty

Thermodynamic effects alone, have already
substantially increased probabilities of temperature

and heavy rainfall events
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