Dynamics and isotope effects of denitrification in Lake Lugano

Jana Tischer¹, Jakob Zopfi¹, Elena Giglio¹, Guangyi Su¹, Adeline Cojean¹, Fabio Lepori², Moritz Lehmann¹ ¹ University of Basel, Department Environmental Sciences, Aquatic and Stable Isotope Biogeochemistry ² University of Applied Sciences of Southern Switzerland, Institute of Earth

Sciences

Swiss National Science Foundation

U N I B A S E L

Anthropogenic Impacts on the N cycle

Aquatic N cycle

Tischer et al.

Types of Nitrate Reduction

Study site: meromictic North Basin of Lake Lugano

Lake Lugano: Previous Studies

water column profile (October 2009)

known anaerobic N-cycling:

- Sulfur-oxidizing denitrifiers
- Organotrophic denitrifiers
- Anammox

Wenk et al., Limnol. Oceanogr. (2013)

Is the dominance of S-dependent denitrification a seasonal feature?

What isotope fractionation effects are associated with denitrification?

Interdisciplinary approach

8

Profiles of the whole water column

 \rightarrow seasonal water column dynamics

Profiles of the redox transition zone

 \rightarrow overlapping NO₃⁻ and HS⁻ profiles at low concentrations

NO₃⁻ reduction rates

→ dynamic activity of denitrifying organisms
 → seasonal limitations of organic electron donors heretal

Nitrate reduction pathways

 \rightarrow nitrate reduction to ammonium by Soxidizers

Isotope effects of nitrate reduction

Isotope effects of nitrate reduction

Isotope effects of nitrate reduction

- Isotope fractionation of nitrate during its reduction is variable!
- Possible influencing factors:

 use of different nitrate reductases
 Nar and Nap

 simultaneous nitrite oxidation via anammox or nitrification

Isotope effects of nitrate reduction: Enzyme effect Nar vs. Nap

Isotope effects of nitrate reduction: Enzyme effect Nar vs. Nap

Isotope effects of nitrate reduction: Enzyme effect Nar vs. Nap

$\delta^{18}O$ -vs- $\delta^{15}N$ ratio during NO₃⁻ reduction

data from pure culture studies (e.g. Treibergs & Granger, 2017)

Isotope effects: $\delta^{18}O$ -vs- $\delta^{15}N$ ratio in incubation experiments

simultaneous use of Nar and Nap by S-oxidizers

→ organotrophic denitrifiers use Nap?

Tischer et al

Variation in $\delta^{18}O:\delta^{15}N$ ratios

Sampling time and depth	δ ¹⁸ Ο/δ ¹⁵ Ν		
	NO ₃ -	NO ₃ ⁻ + Ac	$NO_3^- + HS^-$
March 16, 105 m	0.98	_	0.77
March 16, 110 m	0.78	_	0.68
June 16, 115 m	1.09	_	0.70
June 16, 120 m	1.02	0.79	-
November 16, 105 m	0.63	0.63	0.78
November 16, 155 m	0.58	0.60	0.93

dynamic denitrifying microbial community

Conclusions

- dynamics of denitrification
 - dynamic and complex denitrifying community
 - seasonal limitations of organic electron donors

- isotope effects
 - probably strong enzyme effect

 proof S-dependent nitrate reduction to ammonium

qPCRs to quantify Nar and Nap

 I6S rRNA sequencing of in-situ samples and after growth stimulation

Acknowledgements

- Swiss National Science Foundation
- Group Aquatic and Stable Isotope Geochemistry
 - Maciej Bartosiewicz
 - Thomas Kuhn
 - Christine Wenk
- SUPSI
 - Stefano Beatrizotti
 - Andreas Bruder
 - Marco Simona

