

Adaptation to Climate Change

Selected Highlights

September 5th 2007 | ProClim Berne

Prof. Dr. Gonzague Pillet

IPCC SAR WGIII Principal Lead Author

Main statements

- 1 Placing a higher value on ecosystem services
 - 2 Climate-economic breakthrough

Conclusions

Main statements

- a) Climate Change
- → a persistent change in the average values of the natural variability of climate

as well as

→ a persistent change in the frequency and intensity of extreme events.

Main statements (cont.)

b) Adaptation

Adaptation | 2007 IPCC WG II

Climate Change Impacts, Adaptation, and Vulnerability

- → Climate variations like longer dry seasons and more uncertain rainfall are beginning to prompt adaptation measures.
- → However, adaptation to current climate variability may prove insufficient for future changes in climate
- (→ uneven current adaptation and low readiness for increased exposure).

Main statements (cont.)

Adaptation | 2007 IPCC WG III | Mitigation of Climate Change

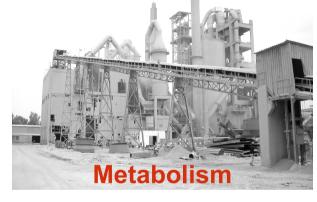
→ Irrespective of the scale of mitigation measures, adaptation measures are necessary.

Adaptation | 2007 WMO | Nairobi Work Programme

→ "Adaptation is one of the main ways in which society can deal with climate change."

1 - Placing a higher value on ecosystem services

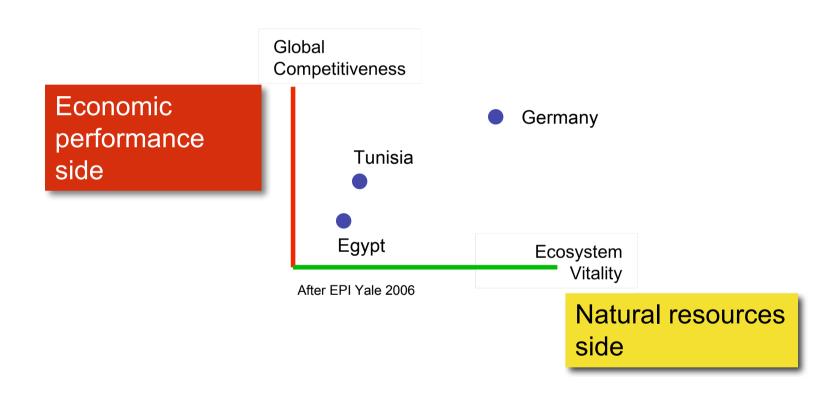
Adaptating to climate change


The emternality side of CC

Mitigating GHG emissions

The externality side of CC

inflows | natural goods & services


market inputs market outputs

outflows | environmenteconomic impacts

1 - Placing a higher value on ecosystem services

1 - Placing a higher value on ecosystem services

→ Example: land value Vs. Ecosystem value & vice versa

Value of world ecosystem services

EARTH	100%
forests	38.20%
wetlands	39.70%
lakes	13.80%
grasslands	7.30%
cultivated land	1.00%

Source: Costanza et al.

2 – Climate-economic breakthrough

gtz

The Tunisian adaptation strategy

- ✓ Overcome short term crisis management through a risk adaptation strategy linked to climate change.
- ✓ Integrate climatic volatility* with the agricultural and economic policies of the country.
- ✓ Manage the socio-economic consequences striking the agricultural sector in an integrated manner between economic sectors.
 - * Climatic 'volatility' is the economic expression of the variability of climate.

2 – Climate-economic breakthrough

Integrate CC indices with economic variables

Market variables	Volatility
Euro USD	10%
Interest rate (10 years)	10%
Stock Exchange indices	17%
Fuel price (turbulence)	til 100%

Climatic indices	Volatility
Historic temperature in August*	10%
Average temperature toward 2030**	15%
Average temperature toward 2050**	27%
Year long precipitations****	30%
Interannual precipitations****	til 100%

^{*} Europe 1802-2003

^{**} Tunisia (1961-1990)

^{***} Tunisia (past century)

^{****} Europe (historically)

Conclusions

Adaptation to current climate variability may prove insufficient for future changes in climate.

Value issue: ecosystem services (emternalities) must be fully addressed and valued.

Climate change indices must be integrated with economic variables

Thank you so much

pillet@ecosys.com

