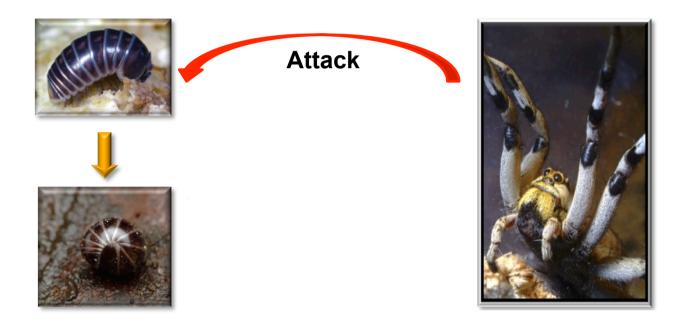


Biodiversity and natural products based therapeutics in medicine

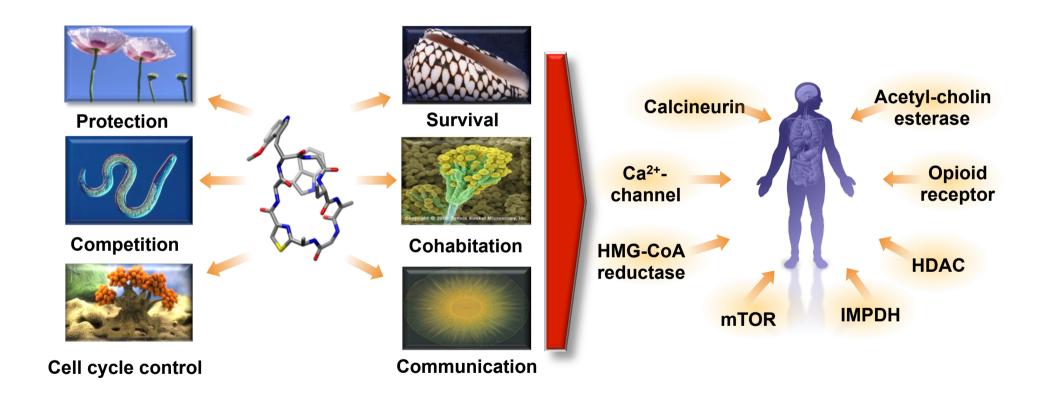
Frank Petersen

Head Natural Products Unit, Novartis Switzerland

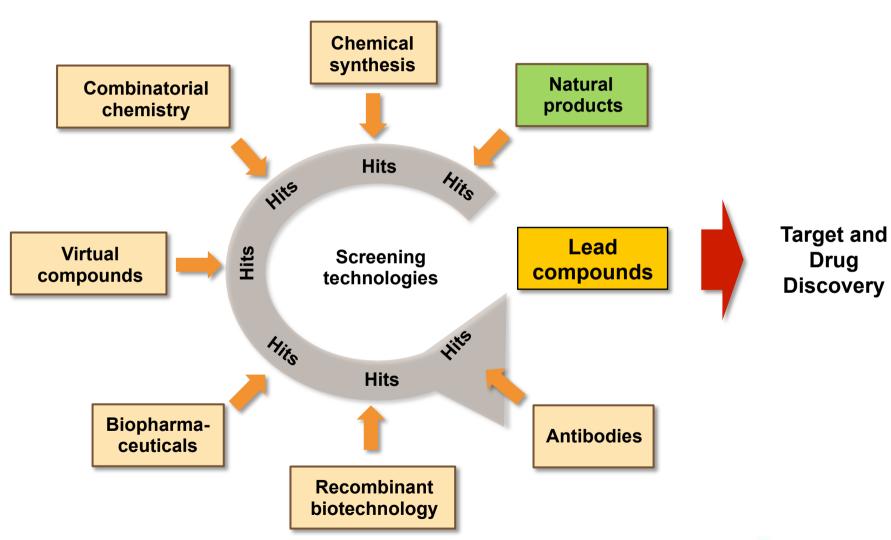

Swiss Biodiversity Forum Bern Jan 15th, 2016

Natural Products – Fitness factors

How to survive in nature

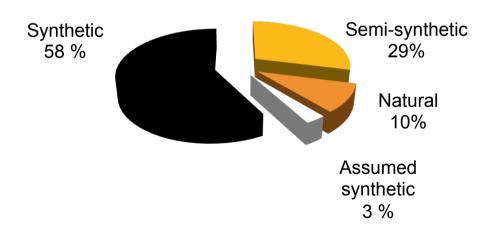

 European millipede Glomeris marginata is a prey of Lycosa sp. wolf spiders ("tarantula")

Natural Products provide paths to new therapies


Targets of NP in nature are also involved in human pathophysiologies

Sources for new pharmaceuticals

Natural products as a compound source for complementary drug discovery concepts



Natural Products provide paths to new drugs

The therapeutic perspective

- Natural products based compounds for therapeutic innovation
 - Account for 39% of 1000 marketed drugs (2010)
- Majority of NP classes, approved between 1981- 03/2015

Analysis of 1000 marketed drugs: Origin of compounds

Bade et al., European J. of. Med. Chem. 2010, 5646-5662

Approved NP classes and semi-synthetics between 1981- 03/2015

Microbial Group	Published Natural Products	Approved NP-classes (1981-3/ 2015)	Drug approvals of related derivatives (1981-3/2015
Actinomycetes (incl other bacterial taxa	12'959	17	29
Myxobacteria	595	1	1
Fungi	13'416	5	17
Plantae	~130'000	11	12

^{*}Only NPs classes considered, identified after 1970

Antibase, **2010**; Ganessan:. Cur. Opinion Chem Biol: 12; 306 (**2008**) Hughes, Mullard: Nature Rev, **2008**, **2009**, **2010**, **2011**, **2012**, **2013**, **2014**, **2015 Drugs.com 2015**

Biodiversity regions and described natural products

Terrestrial

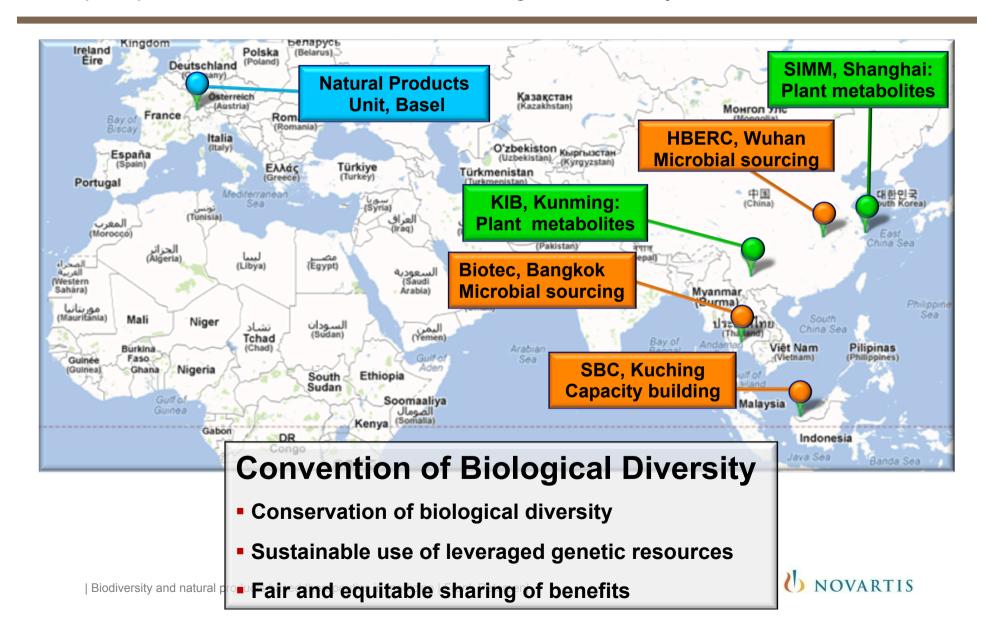
- Mega-diversity regions: E.g. S. America, Australia, Indonesia
- Hotspots of diversity: Tropical rainforests: 4 % of the land surface with 50 % of global diversity
- ~160'000 natural products described

Marine

- Highest degree of biodiversity
- 90 % of all organisms classes
- ~ 15'000 natural products described

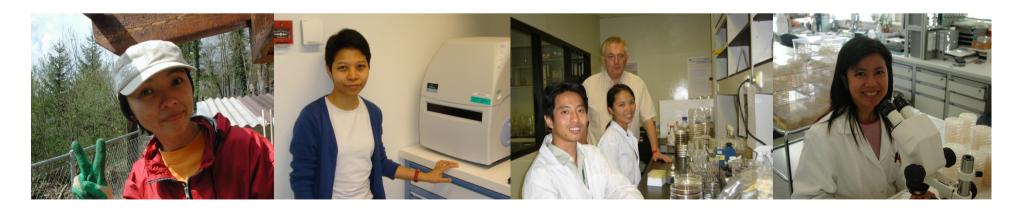
Totally known natural products

~ 175'000 natural products (2014)



Access to biodiversity

Bioprospection and Convention of Biological Diversity



Case study Biotec, Thailand

Knowledge transfer: On-site and in Novartis laboratories in Basel

- 12 Biotec scientists trained in chemistry, microbiology, High-through-put drug at Novartis Switzerland and US

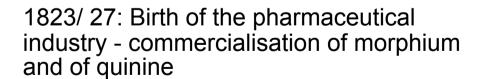
 – totaling in 35 months of training
- Drug discovery seminars/ lectures by Novartis experts in infectious diseases and natural products research coming from USA, SP and CH
- Courses à 4 weeks each at BIOTEC to transfer knowledge for the isolation of targeted microorganisms classes
- Dissemination of specific microbiology know-how to scientists from other SE Asian countries

Case study Biotec, Thailand

Overview of achievements

- > 9'000 microorganisms received for drug discovery
 - BIOTEC is owner of strains
 - Novartis receives time-limited, exclusive user right
 - BIOTEC conducts own research programs with same strains

- Constantly increasing number of natural products from Thailand investigated in HTS at Novartis
 - 2006: 10 % of all isolated NPs at Novartis from BIOTEC strains
 - In 2009: 30 % of all isolated NPs at Novartis from BIOTEC strains

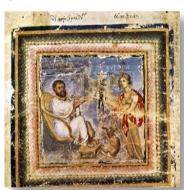

Leveraging plant diversity in medicine

From antique phytotherapy to pharmaceutical industry

17000 BC: First Shamans on paintings

75 AD: Dioscorides wrote "*De Materia Medica*" with 813 plants and 102 minerals for 4740 indications

1898: Aspirin – mass production of a synthetic, natural product based drug


| Biodiversity and natural products based therapeutics in medicine | Frank Petersen|

(Lascaux cave painting; 17000 BC)

Clay tablet, Nippur, Sumeric, 2100 BC

Vienna Dioskurides, 512 AD

Biodiversity and herbal remedies as therapeutics

- Majority of plant derived drugs via ethnobotanical leads
 - 75 % of approx. 140 single entity drugs
- Untapped chemical potential of plant metabolites
 - 140 drugs developed from approx. 100 out of 250.000 species
 - < 10 % of all plant species phytochemically investigated
- 30'000 plant species in China (10% of plant diversity)
 - 12'000 plant species used in TCM
 - 100'000 TCM recipes
- TCM plant diversity with underexplored therapeutic potential to discover new medications

Farnsworth, 1985

Ganessan:. Cur. Opinion Chem Biol: 12; 306 (2008)

Hughes, Mullard: Nature Rev, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015

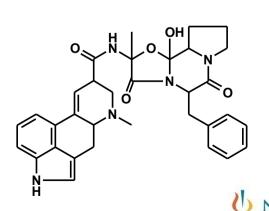
Drugs.com 2015; Lin, 2001

Traditional medicine as sources for new therapeutics: Ergot

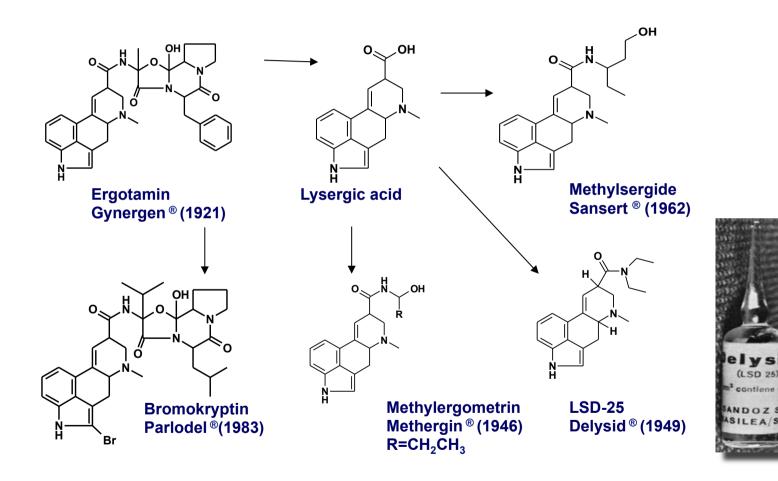
The begin of the pharmaceutical research (at Sandoz)

- Hippokrates noted substantial increase of aborts during humid summers
- Adam Lonicerus: First documentation of the benefit of an aqueous ergot extract for parturition and for post-partum bleeding control in Europe (1582)
- Instable administration and varying concentration of active components in decoction biggest problems

 1918: Isolation of ergotamine for post partum bleeding control at Sandoz

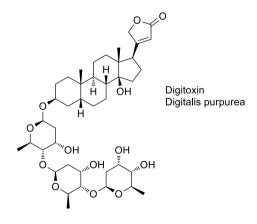


Arthur Stoll 1887-1971



Ergot alkaloid research at Sandoz

Targeting 5-HT, dopamine, and α-adrenergic receptors



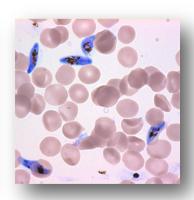
Plants as sources for new therapeutics: Heart glycosides

Glycosides from Asperagales, Lamiales: treatments of heart insufficiency

- Papyrus Ebers, 1550 v. Chr:
 Sea squill for the treatment of weak puls and dropsy
- De historia stripium, 1542:
 Foxglove for the treatment of dropsy and epilepsy
- Engl. physician William Withering (1741-1799): First systematic research on therapeutic and side effects of a medication: Digitalis treatment with 158 Patienten (1785)
- Isolation of heart glycosides from *Digitalis lanata* at Sandoz AG allowed more reliable administration

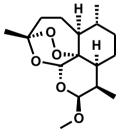
Urinea maritima

Leonhart Fuchs, *De historia stirpium* Basel, 1542


Plants as sources for new therapeutics: Artemsinin

First line treatment against malaria

- 340 AD: Qinghao (= Artemisia annua, Sweet Annie): Traditional treatment of malaria described in a Chinese medical handbook
- 1977: Structure elucidation of artemisinin and its identification as the active principle against plasmodia
- 1994: Collaboration between China and Novartis for the joint development of a combination drug with an artemisinin derivative and lumefantrin against malaria
- 1998: Coartem[®]/Riamet[®] approval


Anopheles sp

P. falciparum

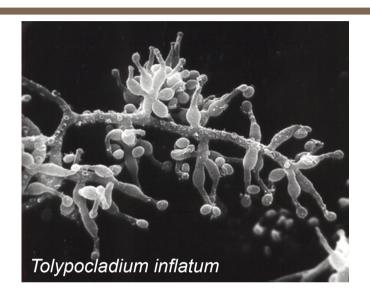
Artemisia annua

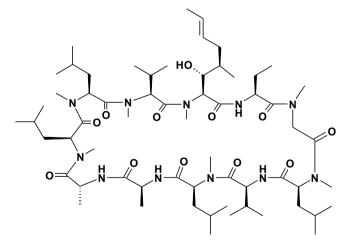
Artemisinin

More than 800 Mio malaria patients treated with Coartem® until end of 2015

Approx. > 1.5 Mio lives could be safed

Hans Rietveld, 2016


Th. Kuhn und Y. Wang in Natural Compounds as Drugs Vol. II; Progress in Drug Research (66) eds F. Petersen & R. Amstutz, Birkhäuser Verlag (2008)



Fungi as sources for new therapeutics: Cyclosporine

Opening up a new medical field: Transplantation medicine

- Cyclosporin (Neoral/Sandimmun[®])
- Natural product of filamentous fungus
 Tolypocladium inflatum
- Cyclic peptide 11 amino acids
- Immunosuppressive activity
- Cyclosporine binding to cyclophilin inhibits the calcineurin function and thereby the T-cell mediated immune response
- Launched 1982 in transplatation medicine and serious form of inflammatory diseases (eg in psoriasis)

Bacteria as sources for new therapeutics: Rapamycin

Actinomycetes and a new therapeutics class for transplantation medicine and oncology

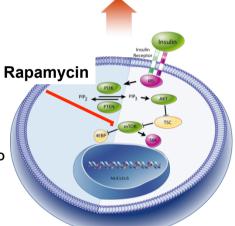
 Bacteria of the class Actinomycetes responsible for the production of 60 % of all approx 27'000 microbially derived natural products (Antibase, 2010) persal
Inder call cluster

A PAS + Iglecogeni heightocyten

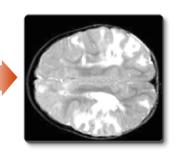
Jumphosyter

125 microsset

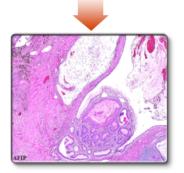
Transplantation medicine



2003



1975


Rapamycin

Tuberous sclerosis 2011

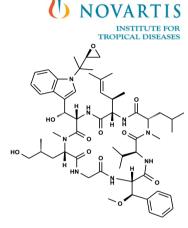
J. Mannick et al.: mTOR inhibition improves immune function in the elderly. Sci Transl Med; 24 December 6, 268, 268 (2014)

Cancer

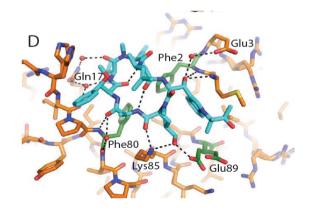
NEW AFINITOR

(everolimus) tablets

2009


Bacteria as sources for new tools: Cyclomarine

Identification of new druggable target in M. tuberculosis


- Mycobacterium tuberculosis infection:
 - 14 Mio tuberculosis cases; 1.7 Mio deaths (2009)
- New targets urgently needed
- Discovery of cyclomarin as potent M.tub. inhibitor
- Proteomics investigations with Mycobacterium lysates reveal ClpC1 as responsible target
- ClpC is a regulatory unit of Clp protease; cyclomarin binding leads to uncontrolled proteolysis

Spangers et al, PNAS, 102, 16678 (2005) Schmitt, EK et al., Angew Chem Int. Ed, 2011, 50, 1-4 World TB Day, 2011 Dileep V. et al., *J. Biol. Chem.* 2013 288: 30883-30891

Cyclomarin A $MIC_{50} = 0.04 - 0.11 \text{ uM}$

Summary

- Natural products account for a considerable part of today's medicines
- Biodiversity driven access to natural products resources is key to ensure a broad chemical diversity for subsequent drug discovery efforts
- Nagoya protocol and the Convention of Biological Diversity regulate bioprospection partnerships and provide improved legal clarity
- Natural products displaying a complementary chemical diversity to synthetically derived substances can function as "pathfinders" to new biological targets and as springboards to uncharted areas of the chemospace
- Recent introductions of natural products in human therapy underpin their important role in the discovery of innovative treatment options

