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Introduction

Ecological network
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Introduction

Types of interaction

Interaction strength matrix:

B11
8= /3.21

Bs:

Bjj is the effect of species j on

species |

if Yjj =1 then S # 0 and/or

Bji # 0

P12
B22

P1s

/3;5

(Bij» Bji)
(--) competition
(+.+) mutualism
(+.-) or (-,+) | antagonism
(+.0) or (0,4) | commensalism
(-,0) or (0,-) | amensalism



Introduction

Generalized Lotka-Volterra model

AN s s
dit’ =Oéi/V;+jzlﬁij/Vj/Vi=Ni Oéi-l-;ﬁij/\/j

per capita growth of species i

N; is the biomass/abundance of species i
«; is the intrinsic per capita growth rate of species i
Bjj is the effect of species j on species i

In a matrix notation:

Remark: if N(t =0) > 0, then N(T) >0 forall T >0



Introduction

Example: one species

ﬂ
dt
4 cases:
1.a>0,6>0
2. a<0,8>0
3.a>0 <0

4 a<0,8<0

= N(a+ BN)



Introduction

Example: one species

Caseaa>0and <0

dN

T N(a+pN)

dt —_——
=f(N)

Feasibility: solve the equation « + SN under the constraint N > 0
*_ _a

= N'=-5>0

Stability (local): linearise the ODE around N*. Set n = N — N*,

dn df
Do FINY+ Ly - n = N*B-
ge S TN+ gyInone -n=N"5n

<0



Introduction

Example: two competing species

dN
T; = Ny (aq + B1iN1 + B12\p)
dN\:
th = No (a2 + Bo1 N1 + B2 Np)

with a1, a2 > 0 and P11, 12, B21, B22 < 0

Feasibility: solve the following linear equations

a1 = — B11Ny — B2\
ap = — o1 Ny — BN

under the constraints Ny > 0 and N, > 0.
(in matrix notation & = —3N)



Introduction

Two competing species: feasibility

a1 = —f11Ny — fraNo and o = — o1 Ny — [ao N

A B C
3 4 !
3 3
2
2
o~ 2
=z 1
1
0 1
0 -1 0
0 1 2 3 0 2 4 -1 0o 1 2 3
N, N, N,
* _ —Paai+Proan % _ —Prioe+faian
N1 T P11B22—P12821 and N2 T P11B22—P12821



Introduction

Two competing species: local stability
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Introduction

Two competing species: local stability

dN

ditl = Ny (a1 + B11N1 + B12\p)
=f1(N1,N2)

dN

T: = No (a2 + Bo1 N1 + B2 N)

=f1(N1,N2)

Let's assume a feasible equilibrium (Nj > 0, N > 0), and let's
linearise around it (n1 = Ny — N, np = No — N3).

dn1 % % 8f1 8ﬂ
. fi(Ny, N3) + m|(Nl,N2)—>(Nf,N;)”1 + m\(/vl,/vz)e(/v;,/v;)nz
dno 0 ot

e fa(N7, N3) + 87/\/1|(N1,N2)—>(N;‘,N;)”1 + 87N2|(N1,N2)—>(N;‘,N2*)n2



Introduction

Two competing species: local stability

dn . .
T; ~ Ny B11m + NiB1an
dn2

e N3 Ba1n + N3 Bazno

In matrix format

—

d -
91~ diag(N*)B
dt ——

J (Jacobian)

N* is locally stable if the real parts of all the eigenvalues of J are
negative.
Here, this is equivalent to det(3) = S11822 — 120821 > 0



Introduction

Two competing species

dN
Ttl = Ny (a1 + B1iN1 + B12Np)
dN
T: = No (a2 + Bo1 N1 + B2 Nb)

Local stability (assuming feasibility):

det(8) = B11822 — B12f21 > 0

Note that this condition is independent of a1 and .
Feasibility:

* _ —Paa1+fraar * _ —Puras+faa
Ny = B11B22—P12/21 and Ny = B11822—P12/21



Introduction

Generalized Lotka-Volterra model

—

dN - . y
—_——
per capita growth rates
@ is the vector of intrinsic growth rates
(3 is the matrix of interaction strength

Question: under which conditions on & and 3 their exist a feasible
and stable equilibrium point N*.

Note that a feasible equilibrium is the solution of the linear
equation & = —GBN*.



Stability

Jacobian of the Lotka-Volterra model

S
dN;
F = N; | o + ZBUNJ
j=1
()

Elements of the Jacobian matrix: Jij = % We obtain:
J

s
Ji=ai+Y_ BN+ NiBi
j=1

and
Jij = NiBjj



Stability

Jacobian of the Lotka-Volterra model

a1 + ZJ-Szl B1jN; + NiB11 N1 B12
J= N2 821 az + ZJ-Szl BojN; + Nz B2

Evaluated at a feasible equilibrium N* > 0:

NiB11 NipBio
J= |58 N3B2o

In matrix notation
J = diag(N*)3



Stability

Class of matrix stability

QUASI-
DOMINANT

QUASI-RECESSIVE

By1>0

Dimitrii O. Logofet (2005), Stronger-than-Lyapunov notions of matrix stability,
or how “flowers” help solve problems in mathematical ecology, Linear Algebra

and its Applications, 398:75-100. - = = =
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Stability

Class of matrix stability

Class of stable matrix

A matrix is called stable if the
real parts of all its eigenvalues are
negative (Re(\;) < 0)

QuAs | = If an interaction matrix 3 is

DOMINANT

stable, we have local stability of a
feasible equilibrium such that:
Nf = Ny =--- = N¢.

QUASI-RECESSIVE




Stability

Class of matrix stability

QUASI-
DOMINANT

D-STABLE

QUASI-RECESSIVE

Class of D-stable matrix

A matrix A is called D-Stable if
the matrix DA is stable for any
positive diagonal matrix D.

= If an interaction matrix 3 is
D-stable, we have local stability
of any feasible equilibrium (recall
that J = diag(N*)3)



Stability

Class of matrix stability

QUASI-
DOMINANT

D-STABLE

QUASI-RECESSIVE

Class of dissipative matrix

A matrix A is called dissipative if
their exist a positive diagonal
matrix D such that DA+ A" D
is stable.

= If an interaction matrix 3 is
dissipative, we have global
stability of any feasible
equilibrium



Stability

Dissipative matrix and Lyapunov function

Let's assume the existence of a feasible equilibrium N*. Then if the
interaction matrix 3 is dissipative, N* is globally stable.
The proofs is based on the following Lyapunov function:

S
i * * N
V(N) = di(N; — Nj — N log )
i=1 !

-,

where diag(d)B + 87 diag(d) is stable.
We obtain

v 3
= O (N NN — ) <0
ij=1



Stability

Two competing species

Let D = —1/Br2 0 be a positive diagonal matrix. We
0 —1/Bx

obtain

D3 = [—1/512 0 ] [511 512] _ [—511/512 -1
B 0 —1/Ba1| [Bor B22]| -1 —B22/B21]"

Therefore det(DB + B D) > 0 if and only if det(3) > 0.
Moreover, Trace(DB) < 0. Then local stability implies global
stability.



Stability

Examples of dissipative matrix

In general we have

Dissipative | = ‘ D-stable ‘ = ‘ Stable ‘
For some class of matrices we have | Stable | = | Dissipative |

1. Symmetric matrices.

ajl  a
2. Matrices of the form: A= |d21 822 - | with a; <0 and

a,-J-ZO.



Stability

Examples of dissipative matrix: niche overlap

Xi X

x (niche axis)
fi(x) = e 0/

Niche overlap:

8= | HOOf(x)dx = e b

— 00



Feasibility

Two competing species

Ny

1 04
<[
The feasible equilibrium is
given by

Nf = (a1 - O.4a2)/0.84
Ni = (az — 0.401)/0.84

Let's compute the set of
a1 and ap compatible with
feasibility:

a; = Ni + 0.4N,

oar = 0.4N5 + Ny

with Ny > 0and N, >0



Feasibility

Two competing species

—p -1

A Competition parameter p = 0.8 B Competition parameter p = 0.6 B — |: p:|
5 5

Let's compute the
set of a7 and a»n
compatible with
feasibility:

a1 = N1+ pNo
az = pNo + Nq

: . with Ny > 0 and
3 3 Ny >0




Feasibility

Generalized Lotka-Volterra model

N
C;—t = diag(N )(a +ﬂN)

The equilibrium is called feasible if the solution N* of
d = —pBN*

is positive. Let's change our point of view, and let's compute the
set of @& compatible with a positive solution N*.

1 P2 -+ Pis : : :
Bo1 B2z Bos R " =

B= . S el B S B
Bs1 PBs2 -+ Pis

Then
a=Nvj + Novo +--- + Ngvs

with Ny, Np, -+, Ng > 0.



Feasibility

Generalized Lotka-Volterra model

fu1 P2 -+ Pis
5 5:21 B22 ) 5?5
Bs1 Bs2 -+ Pis




Feasibility

Structural stability

Remark: we can always chose the &, such that N* = —B7tais
feasible.

Conclusion: the relevant question is how easy it is to have a
feasible solution, i.e., how width is the cone of feasibility?

In mathematics this is called structural stability: how the behaviour
of a dynamical system is function of its parameters, and how large
is the domain in the parameter space compatible with a given
behaviour.

In ecology, an important behaviour is: the stable coexistence of all
species.



Feasibility

Competition system

For a competition system
(Bij < 0) we have an
analytic formula. Solid

angle:

o, — ldet(s)

b I 22 163

Yuri M. Svirezhev and Dimitrii
O. Logofet (1982), Stability of
Biological Communities, Mir
Publishers, Moscow, Russia.



Feasibility

Competition system

Density
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Feasibility

Competition system

I I I I I
G0-9T O0T-9T GTI-9T 0¢-°T GZ-°T
[T71ebawo]3a
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Feasibility

Competition system
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Feasibility

Mutualism

dp; (P) (P) Zj '7,(' \j
dt —P'( PV L i vy s ,5%)
dA; (A) (A) > P



Feasibility

Mutualism: nestedness

o

Plants

23456780910

Animals

23456780910

Animals

Plants

5 10 15 20 25 30 35 40 45

Animals

50 55 60 65 70 75

Jordi Bascompte et al. (2012), The nested

assembly of plant-animal mutualistic networks,

PNAS, 100:9383-9387.

Overlap matrix:

n,(jp) = Z Yik Yk
K

Nestedness:




Numerical simulations

a; € [0.85,0.11]
Bji € [0.99,1.01]
Bj € [0.22,0.24] (i # k)
~ij € [0.19,0.21]

h=0.1
) P P
= Pi<0<,(- - %8P+
. A A
2 — Aol - ¥, 80 A +

p
Zj"/é’ )Aj

—=
1+th ’ij )Aj

(A p.
ZJ’Y,-j P;

A
1+h 37 P;

)
)

Change in persistence
(mutualisms-competitive)

Change in persistence
(real-randomized)

r?<0.0001, P =0.999
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Alex James et al. (2012),
Disentangling nestedness from
models of ecological complexity,
Nature, 487:227-230.



Numerical simulations

Same intrinsic growth rates Intrinsic growth rates set
for all species to the strucutral vector
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Conclusion: conclusions drawn from numerical simulations may
strongly be dependent on the parameters choice, especially the &.



Feasibility

Mutualism

Mean interaction strength

0.42~
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Structural stability

i =02
i =1
h=0.1
)/’..
Vi = gt
(6 = mutualistic
trade-off)
=] F = E DA




Feasibility

Mutualism

Mutualistic trade-off
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Nestedness
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