Dynamic on ecological networks

Rudolf P. Rohr
University of Fribourg
rudolf.rohr@unifr.ch
sites.google.com/site/rudolfrohr

18-20 January 2015 - Mathematical and Computational Modelling in Life Sciences

Ecological network

Nodes = species Links = interactions

Adjacency matrix:

$$Y = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Types of interaction

Interaction strength matrix:

$$\boldsymbol{\beta} = \begin{bmatrix} \beta_{11} & \beta_{12} & \cdots & \beta_{1S} \\ \beta_{21} & \beta_{22} & & \vdots \\ \vdots & & \ddots & \vdots \\ \beta_{S1} & \cdots & \cdots & \beta_{1S} \end{bmatrix}$$

 β_{ij} is the effect of species j on species i

if
$$Y_{ij}=1$$
 then $eta_{ij}
eq 0$ and/or $eta_{ii}
eq 0$

(β_{ij},β_{ji})	
(-,-)	competition
(+,+)	mutualism
(+,-) or (-,+)	antagonism
(+,0) or $(0,+)$	commensalism
(-,0) or (0,-)	amensalism

Generalized Lotka-Volterra model

$$\frac{dN_i}{dt} = \alpha_i N_i + \sum_{j=1}^{S} \beta_{ij} N_j N_i = N_i \underbrace{\left(\alpha_i + \sum_{j=1}^{S} \beta_{ij} N_j\right)}_{\text{per capita growth of species } i}$$

 N_i is the biomass/abundance of species i α_i is the intrinsic per capita growth rate of species i β_{ij} is the effect of species j on species i

In a matrix notation:

$$\frac{d\vec{N}}{dt} = diag(\vec{N}) \left(\vec{lpha} + eta \vec{N}
ight)$$

Remark: if $\vec{N}(t=0) > 0$, then $\vec{N}(T) \ge 0$ for all T > 0

$$\frac{dN}{dt} = N(\alpha + \beta N)$$

4 cases:

1.
$$\alpha > 0$$
, $\beta > 0$

2.
$$\alpha$$
 < **0**, β > **0**

3.
$$\alpha > 0$$
, $\beta < 0$

4.
$$\alpha$$
 < 0, β < 0

Case $\alpha > 0$ and $\beta < 0$

$$\frac{dN}{dt} = \underbrace{N\left(\alpha + \beta N\right)}_{:=f(N)}$$

Feasibility: solve the equation $\alpha + \beta N$ under the constraint N > 0

$$\Rightarrow N^* = -rac{lpha}{eta} > 0$$

Stability (local): linearise the ODE around N^* . Set $n = N - N^*$,

$$\frac{dn}{dt} \approx f(N^*) + \frac{df}{dN}|_{N \to N^*} \cdot n = \underbrace{N^* \beta}_{\leq 0} \cdot n$$

Example: two competing species

$$\frac{dN_1}{dt} = N_1 (\alpha_1 + \beta_{11} N_1 + \beta_{12} N_2)$$

$$\frac{dN_2}{dt} = N_2 (\alpha_2 + \beta_{21} N_1 + \beta_{22} N_2)$$

with $\alpha_1, \alpha_2 > 0$ and $\beta_{11}, \beta_{12}, \beta_{21}, \beta_{22} < 0$

Feasibility: solve the following linear equations

$$\alpha_1 = -\beta_{11} N_1 - \beta_{12} N_2$$

$$\alpha_2 = -\beta_{21} N_1 - \beta_{22} N_2$$

under the constraints $N_1 > 0$ and $N_2 > 0$. (in matrix notation $\vec{\alpha} = -\beta \vec{N}$)

Two competing species: feasibility

$$\alpha_1 = -\beta_{11}N_1 - \beta_{12}N_2$$
 and $\alpha_2 = -\beta_{21}N_1 - \beta_{22}N_2$

$$N_1^* = rac{-eta_{22}lpha_1+eta_{12}lpha_2}{eta_{11}eta_{22}-eta_{12}eta_{21}}$$
 and $N_2^* = rac{-eta_{11}lpha_2+eta_{21}lpha_1}{eta_{11}eta_{22}-eta_{12}eta_{21}}$

Two competing species: local stability

$$\vec{lpha} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $\boldsymbol{eta} = \begin{bmatrix} -1 & -0.4 \\ -0.4 & -1 \end{bmatrix}$

$$\vec{lpha} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $oldsymbol{eta} = \begin{bmatrix} -1 & -1.6 \\ -1.6 & -1 \end{bmatrix}$

Two competing species: local stability

$$\frac{dN_{1}}{dt} = \underbrace{N_{1} (\alpha_{1} + \beta_{11}N_{1} + \beta_{12}N_{2})}_{=f_{1}(N_{1},N_{2})}$$

$$\frac{dN_{2}}{dt} = \underbrace{N_{2} (\alpha_{2} + \beta_{21}N_{1} + \beta_{22}N_{2})}_{=f_{1}(N_{1},N_{2})}$$

Let's assume a feasible equilibrium $(N_1^* > 0, N_2^* > 0)$, and let's linearise around it $(n_1 = N_1 - N_1^*, n_2 = N_2 - N_2^*)$.

$$\frac{dn_1}{dt} \approx f_1(N_1^*, N_2^*) + \frac{\partial f_1}{\partial N_1}|_{(N_1, N_2) \to (N_1^*, N_2^*)} n_1 + \frac{\partial f_1}{\partial N_2}|_{(N_1, N_2) \to (N_1^*, N_2^*)} n_2
\frac{dn_2}{dt} \approx f_2(N_1^*, N_2^*) + \frac{\partial f_2}{\partial N_1}|_{(N_1, N_2) \to (N_1^*, N_2^*)} n_1 + \frac{\partial f_2}{\partial N_2}|_{(N_1, N_2) \to (N_1^*, N_2^*)} n_2$$

Two competing species: local stability

$$\begin{aligned} \frac{dn_1}{dt} &\approx N_1^* \beta_{11} n_1 + N_1^* \beta_{12} n_2 \\ \frac{dn_2}{dt} &\approx N_2^* \beta_{21} n_1 + N_2^* \beta_{22} n_2 \end{aligned}$$

In matrix format

$$\frac{d\vec{n}}{dt} pprox \underbrace{diag(\vec{N}^*)eta}_{J \text{ (Jacobian)}} \vec{n}$$

 \vec{N}^* is locally stable if the real parts of all the eigenvalues of ${\it J}$ are negative.

Here, this is equivalent to $det(\beta) = \beta_{11}\beta_{22} - \beta_{12}\beta_{21} > 0$

Two competing species

$$\frac{dN_1}{dt} = N_1 (\alpha_1 + \beta_{11}N_1 + \beta_{12}N_2)$$
$$\frac{dN_2}{dt} = N_2 (\alpha_2 + \beta_{21}N_1 + \beta_{22}N_2)$$

Local stability (assuming feasibility):

$$\det(\beta) = \beta_{11}\beta_{22} - \beta_{12}\beta_{21} > 0$$

Note that this condition is independent of α_1 and α_2 .

Feasibility:

$$N_1^* = rac{-eta_{22}lpha_1+eta_{12}lpha_2}{eta_{11}eta_{22}-eta_{12}eta_{21}}$$
 and $N_2^* = rac{-eta_{11}lpha_2+eta_{21}lpha_1}{eta_{11}eta_{22}-eta_{12}eta_{21}}$

Generalized Lotka-Volterra model

$$\frac{d\vec{N}}{dt} = diag(\vec{N}) \qquad \underbrace{\left(\vec{\alpha} + \beta \vec{N}\right)}_{\text{per capita growth rates}}$$

 $\vec{\alpha}$ is the vector of intrinsic growth rates $m{\beta}$ is the matrix of interaction strength

Question: under which conditions on $\vec{\alpha}$ and β their exist a feasible and stable equilibrium point \vec{N}^* .

Note that a feasible equilibrium is the solution of the linear equation $\vec{\alpha} = -\beta \vec{N}^*$.

Jacobian of the Lotka-Volterra model

$$\frac{dN_i}{dt} = \underbrace{N_i \left(\alpha_i + \sum_{j=1}^{S} \beta_{ij} N_j\right)}_{f_i(\vec{N})}$$

Elements of the Jacobian matrix: $J_{ij} = \frac{\partial t_i}{\partial N_i}$ We obtain:

$$J_{ii} = \alpha_i + \sum_{i=1}^{S} \beta_{ij} N_j + N_i \beta_{ii}$$

and

$$J_{ij} = N_i \beta_{ij}$$

Jacobian of the Lotka-Volterra model

$$\mathbf{J} = \begin{bmatrix} \alpha_1 + \sum_{j=1}^{S} \beta_{1j} N_j + N_1 \beta_{11} & N_1 \beta_{12} & \cdots \\ N_2 \beta_{21} & \alpha_2 + \sum_{j=1}^{S} \beta_{2j} N_j + N_2 \beta_{22} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}$$

Evaluated at a feasible equilibrium $\vec{N}^* > 0$:

$$\boldsymbol{J} = \begin{bmatrix} N_1^* \beta_{11} & N_1^* \beta_{12} & \cdots \\ N_2^* \beta_{21} & N_2^* \beta_{22} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}$$

In matrix notation

$$\mathbf{J} = diag(\vec{N^*})\boldsymbol{\beta}$$

Class of matrix stability

Dimitrii O. Logofet (2005), Stronger-than-Lyapunov notions of matrix stability, or how "flowers" help solve problems in mathematical ecology, Linear Algebra and its Applications, 398:75-100.

Class of matrix stability

Class of stable matrix

A matrix is called stable if the real parts of all its eigenvalues are negative ($Re(\lambda_i) < 0$)

 \Rightarrow If an interaction matrix $oldsymbol{eta}$ is stable, we have local stability of a feasible equilibrium such that:

$$N_1^* = N_2^* = \cdots = N_S^*.$$

Class of matrix stability

Class of D-stable matrix

A matrix **A** is called D-Stable if the matrix **DA** is stable for any positive diagonal matrix **D**.

 \Rightarrow If an interaction matrix β is D-stable, we have local stability of any feasible equilibrium (recall that $J = diag(\vec{N}^*)\beta$)

Class of matrix stability

Class of dissipative matrix

A matrix A is called dissipative if their exist a positive diagonal matrix D such that $DA + A^TD$ is stable.

 \Rightarrow If an interaction matrix β is dissipative, we have global stability of any feasible equilibrium

Dissipative matrix and Lyapunov function

Let's assume the existence of a feasible equilibrium \vec{N}^* . Then if the interaction matrix β is dissipative, \vec{N}^* is globally stable.

The proofs is based on the following Lyapunov function:

$$V(\vec{N}) = \sum_{i=1}^{S} d_i (N_i - N_i^* - N_i^* \log \frac{N_i}{N_i^*}),$$

where $diag(\vec{d})\beta + \beta^T diag(\vec{d})$ is stable. We obtain

$$\frac{dV}{dt} = \sum_{i,j=1}^{S} (N_i - N_i^*) d_i \beta_{ij} (N_j - N_j^*) < 0$$

Two competing species

Let
$${m D}=egin{bmatrix} -1/eta_{12} & 0 \\ 0 & -1/eta_{21} \end{bmatrix}$$
 be a positive diagonal matrix. We obtain

$$\mathbf{D}\boldsymbol{\beta} = \begin{bmatrix} -1/\beta_{12} & 0 \\ 0 & -1/\beta_{21} \end{bmatrix} \begin{bmatrix} \beta_{11} & \beta_{12} \\ \beta_{21} & \beta_{22} \end{bmatrix} = \begin{bmatrix} -\beta_{11}/\beta_{12} & -1 \\ -1 & -\beta_{22}/\beta_{21} \end{bmatrix}.$$

Therefore $\det(\mathbf{D}\boldsymbol{\beta} + \boldsymbol{\beta}^T \mathbf{D}) > 0$ if and only if $\det(\boldsymbol{\beta}) > 0$. Moreover, $Trace(\mathbf{D}\boldsymbol{\beta}) < 0$. Then local stability implies global stability.

Examples of dissipative matrix

In general we have

For some class of matrices we have $|Stable| \Rightarrow |Dissipative|$.

- 1. Symmetric matrices.
- 2. Matrices of the form: $\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots \\ a_{21} & a_{22} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}$, with $a_{ii} < 0$ and $a_{ij} \ge 0$.

Examples of dissipative matrix: niche overlap

$$f_i(x) = e^{-(x_i - x)^2/\sigma^2}$$

Niche overlap:

$$\beta_{ij} = -\int_{-\infty}^{\infty} f_i(x) f_j(x) dx = -\sqrt{\pi} e^{-(x_i - x_j)^2/2\sigma^2}$$

Two competing species

$$\beta = \begin{bmatrix} -1 & -0.4 \\ -0.4 & -1 \end{bmatrix}$$

The feasible equilibrium is given by

$$N_1^* = (\alpha_1 - 0.4\alpha_2)/0.84$$

 $N_2^* = (\alpha_2 - 0.4\alpha_1)/0.84$

Let's compute the set of α_1 and α_2 compatible with feasibility:

$$\alpha_1 = N_1 + 0.4N_2$$

 $\alpha_2 = 0.4N_2 + N_1$
with $N_1 > 0$ and $N_2 > 0$

Two competing species

$$oldsymbol{eta} = egin{bmatrix} -1 & -
ho \ -
ho & -1 \end{bmatrix}$$

Let's compute the set of α_1 and α_2 compatible with feasibility:

$$\begin{aligned} \alpha_1 &= \textit{N}_1 + \rho \textit{N}_2 \\ \alpha_2 &= \rho \textit{N}_2 + \textit{N}_1 \\ \text{with } \textit{N}_1 &> 0 \text{ and } \\ \textit{N}_2 &> 0 \end{aligned}$$

Generalized Lotka-Volterra model

$$\frac{d\vec{N}}{dt} = diag(\vec{N})(\vec{\alpha} + \beta \vec{N})$$

The equilibrium is called feasible if the solution \vec{N}^* of

$$\vec{\alpha} = -\beta \vec{N}^*$$

is positive. Let's change our point of view, and let's compute the set of $\vec{\alpha}$ compatible with a positive solution \vec{N}^* .

$$\beta = \begin{bmatrix} \beta_{11} & \beta_{12} & \cdots & \beta_{1S} \\ \beta_{21} & \beta_{22} & & \beta_{2S} \\ \vdots & & \ddots & \vdots \\ \beta_{S1} & \beta_{S2} & \cdots & \beta_{1S} \end{bmatrix} = \begin{bmatrix} \vdots & \vdots & & \vdots \\ -\vec{v}_1 & -\vec{v}_2 & \cdots & -\vec{v}_S \\ \vdots & \vdots & & \vdots \end{bmatrix}$$

Then

$$\vec{\alpha} = N_1 \vec{v}_1 + N_2 \vec{v}_2 + \dots + N_S \vec{v}_S$$

with $N_1, N_2, \dots, N_5 > 0$.

Generalized Lotka-Volterra model

$$\boldsymbol{\beta} = \begin{bmatrix} \beta_{11} & \beta_{12} & \cdots & \beta_{1S} \\ \beta_{21} & \beta_{22} & & \beta_{2S} \\ \vdots & & \ddots & \vdots \\ \beta_{S1} & \beta_{S2} & \cdots & \beta_{1S} \end{bmatrix}$$

$$= \begin{bmatrix} \vdots & \vdots & & \vdots \\ -\vec{v}_1 & -\vec{v}_2 & \cdots & -\vec{v}_S \\ \vdots & \vdots & & \vdots \end{bmatrix}$$

Feasibility Structural stability

Remark: we can always chose the $\vec{\alpha}$, such that $\vec{N}^* = -\beta^{-1}\vec{\alpha}$ is feasible.

Conclusion: the relevant question is how easy it is to have a feasible solution, i.e., how width is the cone of feasibility?

In mathematics this is called structural stability: how the behaviour of a dynamical system is function of its parameters, and how large is the domain in the parameter space compatible with a given behaviour.

In ecology, an important behaviour is: the stable coexistence of all species.

Competition system

For a competition system $(\beta_{ij} \leq 0)$ we have an analytic formula. Solid angle:

$$\Omega_{L_1} = \frac{|\det(eta)|}{\prod_j \sum_i |eta_{ij}|}$$

Yuri M. Svirezhev and Dimitrii O. Logofet (1982), *Stability of Biological Communities*, Mir Publishers, Moscow, Russia.

Competition system

$$x_i \backsim Unif(0,\cdots,\mu)$$

$$\beta_{ij} = -e^{-(x_i - x_j)^2}$$

Competition system

Competition system

Feasibility Mutualism

$$\frac{dP_{i}}{dt} = P_{i} \left(\alpha_{i}^{(P)} - \sum_{j} \beta_{ij}^{(P)} P_{j} + \frac{\sum_{j} \gamma_{ij}^{(P)} A_{j}}{1 + h \sum_{j} \gamma_{ij}^{(P)} A_{j}} \right)
\frac{dA_{i}}{dt} = A_{i} \left(\alpha_{i}^{(A)} - \sum_{j} \beta_{ij}^{(A)} A_{j} + \frac{\sum_{j} \gamma_{ij}^{(A)} P_{j}}{1 + h \sum_{i} \gamma_{ii}^{(A)} P_{j}} \right)$$

Mutualism: nestedness

Jordi Bascompte et al. (2012), The nested assembly of plant-animal mutualistic networks, PNAS, 100:9383-9387.

Overlap matrix:

$$n_{ij}^{(P)} = \sum_{k} Y_{ik} Y_{jk}$$

Nestedness:

$$\eta^{(P)} = \frac{\sum_{i < j} n_{ij}^{(P)}}{\sum_{i < j} \min(d_i^{(P)}, d_j^{(P)})}$$

with
$$d_i^{(P)} = \sum_k Y_{ik}$$

Numerical simulations

$$\alpha_i \in [0.85, 0.11]$$
 $\beta_{ii} \in [0.99, 1.01]$
 $\beta_{ij} \in [0.22, 0.24] (i \neq k)$
 $\gamma_{ij} \in [0.19, 0.21]$
 $h = 0.1$

$$\frac{dP_{i}}{dt} = P_{i} \left(\alpha_{i}^{(P)} - \sum_{j} \beta_{ij}^{(P)} P_{j} + \frac{\sum_{j} \gamma_{ij}^{(P)} A_{j}}{1 + h \sum_{j} \gamma_{ij}^{(P)} A_{j}} \right)
\frac{dA_{i}}{dt} = A_{i} \left(\alpha_{i}^{(A)} - \sum_{j} \beta_{ij}^{(A)} A_{j} + \frac{\sum_{j} \gamma_{ij}^{(A)} P_{j}}{1 + h \sum_{j} \gamma_{ij}^{(A)} P_{j}} \right)$$

Alex James et al. (2012), Disentangling nestedness from models of ecological complexity, Nature. 487:227-230.

Numerical simulations

Conclusion: conclusions drawn from numerical simulations may strongly be dependent on the parameters choice, especially the $\vec{\alpha}$.

Mutualism

$$eta_{ij} = 0.2$$
 $eta_{ii} = 1$ $h = 0.1$ $\gamma_{ij} = rac{\gamma_0 Y_{ij}}{d_i^\delta}$ $(\delta = ext{mutualistic trade-off})$

Feasibility Mutualism

References

Yu M. Svirezhev and Dimitrii O. Logofet (1982), Stability of Biological Communities, Mir Publishers, Moscow, Russia.

Dimitrii O. Logofet (1992), Matrices and Graphs: Stability Problems in Mathematical Ecology, CRC Press, Boca Raton, FL.

Dimitrii O. Logofet (2005), Stronger-than-Lyapunov notions of matrix stability, or how "flowers" help solve problems in mathematical ecology, Linear Algebra and its Applications, 398:75-100.

Rudolf P. Rohr, Serguei Saavedra & Jordi Bascompte (2014), On the structural stability of mutualistic systems, Science, 345.

Serguei Saavedra, Rudolf P. Rohr, Luis J. Gilarranz & Jordi Bascompte (2014), How structurally stable are global socioeconomic systems?, Interface, 11.