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Geoengineering is defined as

"deliberate large-scale
manipulation of the planetary
environment to counteract
anthropogenic climate change.”

Shepherd, J. G. S. et al., 2009: Geoengineering the climate: Science, governance
and uncertainty, RS Policy Document 10/09, (London: The Royal Society).
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Stratospheric geoengineering

How could we actually get
the sulfate aerosols
into the stratosphere?

Artillery?
Aircraft?
Balloons?

Tower?

Starting from a mountain top
would make stratospheric
injection easier, say from the
Andes in the tropics, or from
Greenland in the Arctic.

Robock, Alan, Allison B. Marquardt, Ben Kravitz,
and Georgiy Stenchikov, 2009: The benefits,
risks, and costs of stratospheric geoengineering.
Geophys. Res. Lett., 36, 19703, doi:
10.1029/20096L039209.
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Stratospheric Geoengineering

Benefits

1. Reduce surface air temperatures,
which could reduce or reverse
negative impacts of global warming,
including floods, droughts, stronger
storms, sea ice melting, land-based
ice sheet melting, and sea level rise

Increase plant productivity
Increase terrestrial CO, sink
Beautiful red and yellow sunsets
Unexpected benefits

ol o

Each of these needs to be
quantified so that society can
make informed decisions.

Robock, Alan, 2008: 20 reasons why
geoengineering may be a bad idea. Bull. Atomic
Scientists, 64, No. 2, 14-18, 59, doi:
10.2968/064002006.

Robock, Alan, Allison B. Marquardt, Ben Kravitz,
and Georgiy Stenchikov, 2009: The benefits,
risks, and costs of stratospheric geoengineering.
Geophys. Res. Lett., 36,L19703, doi:
10.1029/20096L039209.

Robock, Alan, 2014: Stratospheric aerosol

geoengineering. Issues Env. Sci. Tech. (Special
issue “"Geoengineering of the Climate System"),
38, 162-185.
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Risks

Drought in Africa and Asia

Perturb ecology with more diffuse radiation
Ozone depletion

Continued ocean acidification

Impacts on tropospheric chemistry

Whiter skies

Less solar electricity generation

Degrade passive solar heating

Rapid warming if stopped

Cannot stop effects quickly

Human error

Unexpected consequences

Commercial control

Military use of technology

Societal disruption, conflict between countries
Conflicts with current treaties

Whose hand on the thermostat?

Effects on airplanes flying in stratosphere
Effects on electrical properties of atmosphere
Environmental impact of implementation
Degrade terrestrial optical astronomy
Affect stargazing

Affect satellite remote sensing

More sunburn

Moral hazard - the prospect of it working would
reduce drive for mitigation

Moral authority - do we have the right to do this?
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GeoMIP

We are carrying out standard experiments with the new
GCMs being run as part of CMIP5 using identical global
warming and geoengineering scenarios, to see whether our
results are robust.

For example, how will the hydrological cycle respond to
stratospheric geoengineering? Will there be a significant
reduction of Asian monsoon precipitation? How will ozone and
UV change?

Kravitz, Ben, Alan Robock, Olivier Boucher, Hauke Schmidt, Karl Taylor, Georgiy
Stenchikov, and Michael Schulz, 2011: The Geoengineering Model Intercomparison Project
(6eoMIP). Atmospheric Science Letters, 12,162-167, doi:10.1002/asl.316.

GeoMIP is a CMIP Coordinated Experiment,
as part of the Climate Model

Intercomparison Project 5 (CMIP5). WC RP a
NJTGERS World Climate Research Progv;‘rvamme




Results from G2 experiments
by 11 climate models.

This is a 1%/year increase of CO,
balanced by a reduction of insolation.

Jones, Andy, et al., 2013: The impact of abrupt suspension of solar
radiation management (termination effect) in experiment G2 of
the Geoengineering Model Intercomparison Project (6eoMIP). J.
Geophys. Res. Atmos., 118, 9743-9752, doi:10.1002/ jgrd.50762.
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Results from G1 experiments
by 12 climate models

This is a very artificial experiment, with large
forcing so as to get large response.

Shown are averages from years 11-50 of the
simulations, balancing 4xCO, with solar radiation
reduction to achieve global average radiation balance.

Tilmes, Simone, et al., 2013: The hydrological impact of
geoengineering in the Geoengineering Model Intercomparison
Project (6eoMIP). J. Geophys. Res. Atmos., 118, 11,036-11,058,
doi:10.1002/ jgrd.50868.
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(4xCO, and G1) minus 1850, Summer Monsoon
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Benefits

1. Reduce surface air temperatures,
which could reduce or reverse
negative impacts of global warming,
including floods, droughts, stronger
storms, sea ice melting, land-based

ice sheet melting, and sea level rise

Increase plant productivity
Increase terrestrial CO, sink
Beautiful red and yellow sunsets
Unexpected benefits
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Volcanic analog I

Robock, Alan, Douglas 6. MacMartin, Riley Duren,
and Matthew W. Christensen, 2013: Studying
geoengineering with natural and anthropogenic
analogs. Climatic Change, 121, 445-458, doi:
10.1007/s10584-013-0777-5.

Robock, Alan, Allison B. Marquardt, Ben Kravitz,
and Georgiy Stenchikov, 2009: The benefits,
risks, and costs of stratospheric geoengineering.
Geophys. Res. Lett., 36,L19703, doi:
10.1029/20096L039209.

Robock, Alan, 2014: Stratospheric aerosol

geoengineering. Issues Env. Sci. Tech. (Special
issue “"Geoengineering of the Climate System"),
38, 162-185.
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Risks

Drought in Africa and Asia

Perturb ecology with more diffuse radiation
Ozone depletion

Continued ocean acidification

Impacts on tropospheric chemistry

Whiter skies

Less solar electricity generation

Degrade passive solar heating

Rapid warming if stopped

Cannot stop effects quickly

Human error

Unexpected consequences

Commercial control

Military use of technology

Societal disruption, conflict between countries
Conflicts with current treaties

Whose hand on the thermostat?

Effects on airplanes flying in stratosphere
Effects on electrical properties of atmosphere
Environmental impact of implementation
Degrade terrestrial optical astronomy
Affect stargazing

Affect satellite remote sensing

More sunburn

Moral hazard - the prospect of it working would
reduce drive for mitigation

Moral authority - do we have the right to do this?
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Tambora, 1815, produced the
“Year Without a Summer” (1816)

Percy Bysshe Shelley Mary Shelley George Gordon,
Lord Byron
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1783-84, Lakagigar (Laki), Iceland
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1783-84 Laki Eruption in Iceland
(8 June 1783 - 7 February 1784)

Second largest flood lava
eruption in historical time

Iceland’ s biggest
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Lava = 14.7 km3 Gl

- 3 [ .
Tephra = 0.4 km — :} s

/\/\ } . };1 |l;,: _-

WVZ,EVZ, NVZ are é‘ § Yy -
Western, Eastern and AR sy
Northern Volcanic Zones g\ﬂ\ -&

RUTGERS

Fig. 1 from Thordarson and Self (2003) Department of Environmental Sciences



Laki SAT Anomaly (°C) JJA 1783 q-flux




Laki Cloud Cover Anomaly (%) JJA 1783 q—flux
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Laki Precip. Anomaly (mm/day) JJA 1783 q—flux




Constantin-Frangois de Chasseboeuf,
Comte de Volney
Travels through Syria and Egypt, in the .
years 1783, 1784, and 1785, Vol. I
Dublin, 258 pp. (1788)

“The inundation of 1783 was not sufficient, great part of the lands
therefore could not be sown for want of being watered, and another
part was in the same predicament for want of seed. In 1784, the
Nile again did not rise to the favorable height, and the dearth
immediately became excessive. Soon after the end of November,
the famine carried off, at Cairo, nearly as many as the plague; the
streets, which before were full of beggars, now afforded not a
single one: all had perished or deserted the city."

By January 1785, 1/6 of the population of Egypt had either died or left the
country in the previous two years.

IQ_]TGERS http://www.academie-francaise.fr/images/immortels/portraits/volney.jpg
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FAMINE IN INDIA AND CHINA IN 1783

The Chalisa Famine devastated India as the
monsoon failed in the summer of 1783.

There was also the Great Tenmei Famine in Japan
in 1783-1787, which was locally exacerbated by
the Mount Asama eruption of 1783.

RUTGERS

Department of Environmental Sciences



What about other high latitude
eruptions?

There have been three major high latitude eruptions in the
past 2000 years:

939 Eldgja, Iceland - Tropospheric and stratospheric

1783-84 Lakagigar (Laki), Iceland - Same as Eldgjd

1912 Novarupta (Katmai), Alaska - Stratospheric only

RUTGERS

Department of Environmental Sciences
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Katmai village, buried by ash from the June 6, 1912 eruption
Katmai volcano in background covered by cloud

Simulations showed same reduction in African summer precipitation.
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Precipitation Change at Seasonal Resolution
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L15702 TRENBERTH AND DAL PINATUBO AND THE HYDROLOGICAL CYCLI LIST02
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Effects of Mount
Pinatubo volcanic
eruption on the
hydrological cycle as
an analog of
geoengineering
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Figure 3. (a) Obscrved precipitation anomalies (relative to 1930 -2004 mean) in mmyday during October 1991
September 1992 over land. Warm colors indicate below normal precipitation. (b) As for Figure 3a but for the simulated
runoff [Qian et al, 2006] using a comprehensive land surface model forced with observed precipitation and other
atmosphene forcing i mm/day, (¢) Palmer Drought Seventy Index (PDSI multuplied by 0.1) for October 1991 - Sepiember
1992 |Dai et al., 2004). Warm colors indicate drying. Values less than ~2 (0.2 on scale) indicate moderate drought, and
thosc less than -3 indicate severe drought




Summer monsoon drought index pattern
using tree rings for 750 years
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Figure 2. Supcrposed cpoch analysis using the reconstructied PDSI values from the Monsoon Asia Drought Atlas
(MADA) [Cook er al, 2010] and the scts of events vears shown in Table |, Statstically sigmbicant (NP6 one-tinled)
cpochal anomalics based on Monte Cardo resampling (n = 10,000) are indicated by crosses

Anchukaitis et al. (2010), Influence of volcanic eruptions on the climate of the Asian
monsoon region. Geophys. Res. Lett., 37,L22703, doi:10.1029/20106L044843
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Volcanic aerosols produce more
reactive chlorine
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Tropospheric
chlorine diffuses
to stratosphere.

Volcanic aerosols
make chlorine
available to
destroy ozone.

Solomon (1999)
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The many ways in which the El Chichon dust
cloud is being observed (drawn by Thais Faller).
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“The Scream”
Edvard Munch

Painted in 1893
based on Munch’ s
memory of the
brilliant sunsets
following the
1883 Krakatau
eruption.
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Sunset over Lake Mendota, July 1982




Diffuse Radiation from

Pinatubo Makes a Whiter Sky

Photographs by Alan Robock
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Department of Environmental Sciences



Broadband solar radiation, Mauna Loa Observatory (19°N)
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Geoengineering: Whiter sKkies?

» - - - 3 » - -
Ben Kravitz.! Douglas G. MacMantin.” and Ken Caldeira’
Received 9 March 2012 revesed | May 201 2; acoepied 2 May 2012; published | June 2012

[1] Ome proposed side effect of geoengineering with
stratosphenc sulfate acrosols is sky whitening during the day
and afterglows near sunset, as 1s seen after large volcanic
eruptions. Sulfate acrosols m the stratosphere would increase
diffuse light received at the surface, but with & non-uniform
spectral distnbution. We use a radiative transfer model to
calculate spectral rradiance for idealized size distributions of
sulfate acrosols. A 2% reduction in total imadiance, approx-
imately enough to offset anthropogenic warming for a dou-
bling of CO, concentrations, brightens the sky (increase in
diffuse Light) by 3 to 5 times, depending on the acrosol size
distribution. The relative increase 1s less when optically thin
cimrus clouds are inchuded in our simulations. Particles with
small radii have little mfluence on the shape of the spectra.
Particles of radius ~0.5 pm preferentially increase diffuse
imadiance m red wavelengths, whercas large particles
(~0.9 um) preferentially increase diffuse imadiance m blue
wavelengths. Spectra show little change in dominant wave-
length, indicating little change in sky hue, but all particle
size distnbutions produce an increase in white light relative
to clear sky condiions, Diffuse sky spectra in our simuka-
tions of geoengineenng with stratosphenc acrosols are sim-
ilar to those of average conditions in urban arcas today.
Citation: Kravitz, B, D. G. MacMartin, and K. Caldeira (2012),
Geoengineenng: Whiter skies?, Geopliys. Res. Letr, 39, L11801, Alan Robock

dor 101029200 2GLOS 1652, onmental Sciences




Nevada Solar One

64 MW Solar steam generators

requiring direct solar

Seville, Spain
Solar Tower
11 MW

http://www.electronichealing.co.uk/articles/solar_power_tower_spain.htm
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Additional carbon sequestration after volcanic eruptions
because of the effects of diffuse radiation, but
certainly will impact natural and farmed vegetation.

nature Vol 458123 April 2009 dok10.1038/nature07949

LETTERS

Impact of changes in diffuse radiation on the global
land carbon sink

Lina M. Mercado', Nicolas Bellouin®, Stephen Sitch”, Olivier Boucher”, Chris Huntingford', Martin Wild" Alan Robock
& Peter M. Cox’ bnmental Sciences
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Subaru (8-m mirror) Keck 1 and 2 (10-m mirrors)

Mauna Kea Observatory, Big Island, Hawaii




Haleakala Observatories, Maui, Hawaii




Are We Ready for the Next Big Volcanic Eruption?
Scientific questions to address:

What will be the size distribution of sulfate aerosol particles created
by geoengineering?

How will the aerosols be transported throughout the stratosphere?

How do temperatures change in the stratosphere as a result of the

aerosol interactions with shortwave (particularly near IR) and
longwave radiation?

Are there large stratospheric water vapor changes associated with
stratospheric aerosols? Is there an initial injection of water from
the eruption?

Is there ozone depletion from heterogeneous reactions on the
stratospheric aerosols?

As the aerosols leave the stratosphere, and as the aerosols affect
the upper troposphere temperature and circulation, are there
interactions with cirrus and other clouds?

How will tropospheric chemistry be affected by stratospheric

I geoengineering? g



Do stratospheric aerosols grow with
large SO, injections?

8 v v : -
£ 200MT S0, Ay =1 % 108 km? |
"Successively =
larger SO, G 5 3 -
injections do not S 4 90T 903 1X 10" o
create w 5
proportionally g,] 10 MT SO,, 1 X 107 km?
larger optical o]
depths because |

9 12 15 18 21 24
TIME, months

W
=]

successively 0

larger sulfate )
Fig. 3. The lognormal mode radius of the aerosol number size

Pﬂr"“def are distribution for the SO, injections shown in Figure 2, as a function
fO r'med . of time. Areas refer to the initial area of the cloud over which
oxidation is assumed to occur.




Heckendorn et al. (2009) showed particles would grow,
requiring much larger injections for the same forcing.
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Column averaged effective radius (Pinatubo)
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Figure 4. Column averaged aerosol effective radius (um) for 7°S and 40°N.

"It combines both particle density, calculated from SAGE IT extinctions, and
effective radii, calculated for different altitudes from ISAMS [Improved
Stratospheric And Mesospheric Sounder on UARS] measurements.”

Stenchikov, Georgiy L., Ingo Kirchner, Alan Robock, Hans-F. Graf, Juan Carlos Antufia, R. 6.

Ty

Grainger, Alyn Lambert, and Larry Thomason, 1998: Radiative forcing from the 1991 Mount
inatubo volcanic eruption. J. Geophys. Res., 103, 13,837-13,857.




Are We Ready for the Next Big Volcanic Eruption?

Desired observations or outdoor experiments:

Balloons

Airships (blimps in the stratosphere)
Aircraft and drones (up to 20 km currently)
Lidar (ground-based and on satellites)

Satellite radiometers, both nadir and limb pointing

Spraying a small amount of SO, into the volcanic aerosol
cloud to see if you get more or larger particles?

IQ_]TGERS Alan Robock

Department of Environmental Sciences
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An artist's rendering of a stratospheric airship in flight.
Credit Keck Institute for Space Studies/Eagre Interactive

IQJTGERS http://www.nytimes.com/2014/08/26/science/airships- Alan Robock

that-carry-science-into-the-stratosphere.html Department of Environmental Sciences
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SAGE 11, 11l

The many ways in which the El Chichon dust .
cloud is being observed (drawn by Thais Faller). ‘,‘/

KUTGERS Robock (1983) Alan Robock
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CLIMATE INTERVENTION

‘tmlnm DioxideMemaval and
Reliable Sequostration

CLIMATE
INTERVENTION

Rollecting Sunlight to Cool Earth

Released February 14, 2015

BOARD ON ATMOSPHERIC NATIONAL RESEARCH COUNCIL
SCIENCES AND CLIMATE OF THE NATIONAL ACADEMIES

Sponsors: U.S. National Academy of Sciences, U.S. intelligence community,
National Aeronautics and Space Administration, National Oceanic and
Atmospheric Administration, and U.S. Department of Energy




CLIMATE INTERVENTION

Carbon CLIMATE Solar
Dioxide e it Radiation
Removal Management
(CDR) (SRM)
Released February 14, 2015
BOARD ON ATMOSPHERIC NATIONAL RESEARCH COUNCIL
SCIENCES AND CLIMATE OF THE NATIONAL ACADEMIES

Sponsors: U.S. National Academy of Sciences, U.S. intelligence community,
National Aeronautics and Space Administration, National Oceanic and
Atmospheric Administration, and U.S. Department of Energy




THERE IS NO SUBSTITUTE
FOR MITIGATION AND ADAPTATION

Recommendation 1:

Efforts to address climate change should continue to

focus most heavily on

* mitigating greenhouse gas emissions

* in combination with adapting to the impacts of
climate change

because these approaches

* do not present poorly defined and poorly quantified
risks and

* are at a greater state of technological readiness

BOARD ON ATMOSPHERIC NATIONAL RESEARCH COUNCIL

SCIENCES AND CLIMATE OF THE NANONAL ACADEMIES

KUTGERS Alan Robock

Department of Environmental Sciences



WHY “CLIMATE INTERVENTION"¢

There are several meanings to
the term “geoengineering”

In general, the term
“engineering” implies a more
precisely tailored and
controllable process than might
be the case for climate
interventions

Intervention is an action
intended to improve a situation

BOARD ON ATMOSPHERIC NATIONAL RESEARCH COUNCIL

SCIENCES AND CLIMATE OF THE NATIONAL ACADEMIES

KUTGERS Alan Robock

Department of Environmental Sciences



CARBON DIOXIDE REMOVAL READY FOR
INCREASED RESEARCH AND DEVELOPMENT

Recommendation 2:

The Committee recommends research and development

investment to

* improve methods of carbon dioxide removal and disposal
at scales that matter

in particular to

* minimize energy and materials consumption

» identify and quantify risks

* lower costs, and

* develop reliable sequestration and monitoring

BOARD ON ATMOSPHERIC NATIONAL RESEARCH COUNCIL

SCIENCES AND CUMATE OF THE NATIONAL ACADEMIES

KUTGERS Alan Robock

Department of Environmental Sciences



ALBEDO MODIFICATION POSES

SIGNIFICANT RISKS

Environmental risks — both known and poorly known

- Decreases in stratospheric ozone

— Changes in the amount and patterns of precipitation

— No reduction of root cause of climate change (greenhouse gases)
— Poorly understood regional variability
— Potential risk of millennial dependence

Significant potential for unanticipated, unmanageable, and
regrettable consequences

-~ Including political, social, legal, economic, and ethical dimensions

Recommendation 3: Albedo modification at scales sufficient
to alter climate should not be deployed at this time

BOARD ON ATMOSPHERIC NATIONAL RESEARCH COUNCIL
SCIENCES AND CLIMATE OF THE NATIONAL ACADEMIES

KUTGERS Alan Robock

Department of Environmental Sciences



ALBEDO MODIFICATION RESEARCH

Research needed to determine if albedo modification could be viable
climate response

- |If there were a climate emergency
— Could it be key part of a portfolio of responses?

Better understanding of consequences needed if there were an action by a
unilateral / uncoordinated actor

Recommendation 4:

The Committee recommends an albedo modification
research program be developed and implemented that
emphasizes multiple benefit research that furthers

* basic understanding of the climate system

* and its human dimensions
BOARD ON ATMOSPHERIC NATIONAL RESEARCH COUNCIL

SCIENCES AND CLIMATE OF THE NATIONAL ACADEMIES

KUTGERS Alan Robock

Department of Environmental Sciences



ALBEDO MODIFICATION RESEARCH

Current observational
capabilities lack sufficient
capacity to detect and
monitor environmental
effects of albedo
modification deployment

Recommendation 5: The Committee recommends that the
United States improve its capacity to detect and measure
changes in radiative forcing and associated changes in climate

BOARD ON ATMOSPHERIC NATIONAL RESEARCH COUNCIL

SCIENCES AND CLIMATE OF THE NATIONAL ACADEMIES

RUTGERS Alan Robock

Department of Environmental Sciences



GOVERNANCE CONSIDERATIONS

Recommendation 6:

The Committee recommends the initiation of a serious
deliberative process to examine:

(a) what types of research governance, beyond those that
already exist, may be needed for albedo modification
research, and

(b) the types of research that would require such governance,
potentially based on the magnitude of their expected impact
on radiative forcing, their potential for detrimental direct
and indirect effects, and other considerations

BOARD ON ATMOSPHERIC NATIONAL RESEARCH COUNCIL
SCIENCES AND CLIMATE OF THE NATIONAL ACADEMIES

KUTGERS Alan Robock

Department of Environmental Sciences



Stratospheric Geoengineering

Benefits

1. Reduce surface air temperatures,
which could reduce or reverse
negative impacts of global warming,
including floods, droughts, stronger
storms, sea ice melting, land-based

ice sheet melting, and sea level rise

Increase plant productivity
Increase terrestrial CO, sink
Beautiful red and yellow sunsets
Unexpected benefits

S W N

Not testable with GeoMIP or
the volcanic analog

Robock, Alan, Douglas 6. MacMartin, Riley Duren,
and Matthew W. Christensen, 2013: Studying
geoengineering with natural and anthropogenic
analogs. Climatic Change, 121, 445-458, doi:
10.1007/s10584-013-0777-5.

Robock, Alan, Allison B. Marquardt, Ben Kravitz,
and Georgiy Stenchikov, 2009: The benefits,
risks, and costs of stratospheric geoengineering.
Geophys. Res. Lett., 36,L19703, doi:
10.1029/20096L039209.

Robock, Alan, 2014: Stratospheric aerosol

geoengineering. Issues Env. Sci. Tech. (Special
issue “"Geoengineering of the Climate System"),
38, 162-185.
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Risks

Drought in Africa and Asia

Perturb ecology with more diffuse radiation
Ozone depletion

Continued ocean acidification

Impacts on tropospheric chemistry

Whiter skies

Less solar electricity generation

Degrade passive solar heating

Rapid warming if stopped

Cannot stop effects quickly

Human error

Unexpected consequences

Commercial control

Military use of technology

Societal disruption, conflict between countries
Conflicts with current treaties

Whose hand on the thermostat?

Effects on airplanes flying in stratosphere
Effects on electrical properties of atmosphere
Environmental impact of implementation
Degrade terrestrial optical astronomy
Affect stargazing

Affect satellite remote sensing

More sunburn

Moral hazard - the prospect of it working would
reduce drive for mitigation

Moral authority - do we have the right to do this?



London Sunset After Krakatau
4:40 p.m., Nov. 26, 1883

Watercolor by William Ascroft
Figure from Symons (1888)
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"The Scream”
Edvard Munch

Painted in 1893
based on Munch's
memory of the
brilliant sunsets
following the
1883 Krakatau
eruption.
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