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Old modelling framework: Phyllotaxis

Phyllotaxis = Observation of regular pattern in the arrangement of leaves on a
stem.

(a) Aeonium (b) Cone (c) Sunflower
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Old modelling framework: Phyllotaxis

Fibonacci numbers and plants

Fibonacci numbers : X0 = 1, X1 = 1, Xk+1 = Xk +Xk−1

=⇒ 1,1,2,3,5,8,13,21,34, . . .

2 and 3 are two consecutive Fibonacci numbers.
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Old modelling framework: Phyllotaxis

Fibonacci numbers and plants II

8 13

8 and 13 are also two consecutive Fibonacci’s numbers.
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Old modelling framework: Phyllotaxis

Golden angle and plants

Figure: The angle between two consecutive leaves is ± constant: this is the
divergence angle, which is well approximated by φ≈ 137.5 deg.
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Old modelling framework: Phyllotaxis Mathematical models

Mathematical models I

Hofmeister (1868) observed that the new primordium formed at the least
crowded spot.

Turing A. M. (1952) developed reaction-diffusion models to explain
pattern. These models are used in morphogenesis in various settings, but
do not seem to be relevant for phyllotaxis.
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Old modelling framework: Phyllotaxis Mathematical models

Mathematical models I

Adler I. (1974) used the idea of repulsion in a first model.

Levitov L. (1991) vortex model, using repulsive potentials. Theory based
on hyperbolic geometry, and numerical simulations which show the
emergence of Fibonacci numbers and of the Golden Angle.

Douady S. and Couder Y. (1992) proposed an experiment for the Levitov’s
model. Emergence of Fibonacci spirals.

Kunz M. (1995). Rigorous mathematical study of these experiments using
statistical mechanics. Relations with number theory.

Atela P., Golé C. and Hotton S. (2002) Rigorous mathematical study of
Adler’s model, in the spirit of Levitov and Kunz. Strong use of hyperbolic
geometry and number theory.
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Old modelling framework: Phyllotaxis Mathematical models

Models based on biological facts

Shipman P. and Newell A. (2005). New framework, more realistic and
more close to biology. Use von Karman equations from elasticity theory to
explain the regular patterns observed in plants.
Jönsson et al. (2006). First model based on experimental facts.
Mathematical model for auxin transport (the plant hormone auxin is
one of the main actors of plant growth).
Smith et al. (2006). Model of active auxin transport, with PIN proteins.
Feugier et al. (2006). Model of auxin transport based on flux, with PIN
proteins.
Stoma et al. (2008). Model of auxin transport based on flux, with PIN
proteins.
Newell A, Shipman P and Sun Z. (2007). Models coupling mechanical and
biochemical effects, based on the models of Jönsson and Smith.
Continuous limit of the model of Jönsson for auxin transport yields p.d.e.
similar to the von Karman equations.
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Old modelling framework: Phyllotaxis New organs are created in the meristem

Anatomy of the plant

Figure: from M. Tsiantis and A. Hay, Nature Reviews Genetics 4, 2003

Organ of a plant = leaves, flowers

Initiation of the organ on the top of the stem (meristem).
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Pattern formation in plants The plant hormone auxin

Conceptual model of the regulation of phyllotaxis by polar auxin fluxes in the shoot meristem

Smith R S et al. PNAS 2006;103:13011306

©2006 by National Academy of Sciences
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Pattern formation in plants The plant hormone auxin

Regular patterns emerge in the meristem, as a consequence of auxin
peaks formation
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Pattern formation in plants The auxin flux

Zoom on the two biochemical processes

Auxin can diffuse through cell membranes, but can also be transported
with the help of PIN proteins.

The PIN proteins are exporters of auxin =⇒ Polarization of the process

This process creates an auxin depleted zone around the incipient
primordium.
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Pattern formation in plants The auxin flux

Schematic representation

PIN Proteins

Auxin
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Pattern formation in plants The auxin flux

Concentration based model
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Pattern formation in plants The auxin flux

PIN polarization, auxin peaks formation

New primordia

cells

PIN proteins

Auxin
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Pattern formation in plants The auxin flux

ai = auxin concentration in cell i in mol/m3

pi = PIN concentration in cell i

pij = PIN concentration on the membrane of cell i facing cell j (1)

Cell j Cell i Cell k

[PIN] [PIN] [PIN]

[IAA] [IAA] [IAA]

... ...

Comput. biol. group (Fribourg) Mathematical Modeling in Life Sciences Introduction January 2015 16 / 20



Pattern formation in plants The auxin flux

Model based on ordinary differential equations (o.d.e.)

Equations of Jönsson et al. (2006):
dai

dt
= µ−νai +D ∑

k∼i
(ak −ai)+T ∑

k∼i
(ak pki −aipik)

dpij

dt
= f (aj)pi − k2pij

dpi

dt
= ∑

k∼i
(k2pik − f (ak)pi) (2)

f (x) = k1x . (3)

Cell j Cell i Cell k

[PIN] [PIN] [PIN]

[IAA] [IAA] [IAA]

... ...

Comput. biol. group (Fribourg) Mathematical Modeling in Life Sciences Introduction January 2015 17 / 20



Pattern formation in plants The auxin flux

Simulation from Sahlin et al. (2009)
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Pattern formation in plants The auxin flux

Simulation from Smith et al. (2009)
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Workshop Content

Modelling topics

Pattern formation on growing domains using reaction-diffusion equations
(Dagmar Iber)

Models for photosynthesis and metabolic networks basd on o.d.e (Olivier
Ebenhoe)

Foodwebs modelling using graph theory (Louis-Félix Bersier)

Stability of Lotka Volterra dynamical systems (Rudolf Rohr)

Chemical reaction networks and Markov chains (Christian Mazza)

Problem sessions and group works are proposed for each of these
topics. The projects involve simulations using either the statistical
software R or MatLab
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