Nitrogen

"Biological" Carbon

"Biological"

Connecting the wheels on the role of nitrogen for the global carbon cycle

Nicolas Gruber

Environmental Physics, ETH Zürich, Switzerland.

Acknowledgments:

Jim Galloway, Xin Jin, Peter Thornton

Human perturbations of the nitrogen and carbon cycles

Fertilization Eutrophication Fossil-fuel burning

The global nitrogen cycle and its human perturbation

The global nitrogen cycle is very dynamic, with many source and sink terms, leading to a relatively short residence time in the land and ocean systems.

The global nitrogen cycle and its human perturbation

The global nitrogen cycle is very dynamic, with many source and sink terms, leading to a relatively short residence time in the land and ocean systems.

Anthropogenic perturbation of the global N-cycle

Industrial N_2 -fixation and fossil fuel burning has more than doubled the input of reactive nitrogen into land ecosystems.

30 + 50

The global nitrogen cycle and its human perturbation

Connecting the wheels

The cycling of reactive nitrogen and that of carbon are tightly connected. Changes in one invariably lead to changes in the other.

Outline

- 1. Introduction: The global N-cycle
- 2. Case I: N-limitation and carbon-climate-cycle feedbacks
- 3. Case II: Fe-fertilization and N₂O feedbacks
- 4. Summary and conclusions

Projected behavior of the global carbon sinks

LAND UPTAKE: Strong CO₂ fertilization effect

Gruber et al. (2004)

Projected behavior of the global carbon sinks

Gruber et al. (2004)

Carbon-nitrogen-climate interactions

Conceptual diagram

ATMOSPHERIC DRIVERS HUMAN DRIVERS BIOGEOCHEMICAL CYCLES

Results from a coupled carbon-nitrogen-climate model

NCAR CCSM with interactive N-cycle

Low fertilization effect

Low temperature sensitivity Low clin

Low climate sensitivity

Carbon-nitrogen-climate interactions: Mechanism

Enhanced remineralization of soil-nitrogen led to enhanced growth

Carbon-nitrogen-climate interactions

The consideration of nitrogen-carbon interactions appears to fundamentally alter the response of the land biosphere to CO_2 and temperature changes!

Outline

- 1. Introduction: The global N-cycle
- Case I: N-limitation and carbon-climate-cycle feedbacks
- 3. Case II: Fe-fertilization and N₂O feedbacks
- Summary and conclusions

C-N-INTERACTIONS

Nitrogen - carbon coupling in the ocean

Iron fertilization: How does it work?

Sarmiento & Gruber (2006)

Impact of large-scale Fe-fertilization on productivity

Changes in the oxygen distribution

Oxygen depletion underneath fertilization sites
Additional oxygen changes downstream in response to changes in export

N₂O offsetting effect of Fe-fertilization in the tropics

Rapid decrease of CO₂ uptake while N₂O production and emission stay high lead to large reduction in benefit

Offsetting effect of enhanced N₂O emissions

Time & Scale of Fertilization	Tropical Ocean	Southern Ocean
	% offset	% offset
100 yr large-scale	40 (±28)	13 (±6)
10 yr large-scale	58 (±67)	11 (±18)
10 yr patch-scale	115 (±34)	-7 (±40)

Very substantial offsetting effect. In extreme cases, iron fertilization might actually increase global warming

Summary and Conclusions

• Consideration of *carbon-nitrogen-climate feedbacks* is fundamental if we want to reliably predict the future response of the Earth system to global climate change.

- Consideration of such feedbacks in the *land biosphere* may fundamentally alter the *magnitude and sign of carbon-climate feedbacks*.
- Such feedbacks also need to be considered in the *ocean*,
 particularly in the context of some proposed *geo-engineering* solutions.