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Human perturbations of the nitrogen and carbon cycles
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GLOBAL N-CYCLE

The global nitrogen cycle and its human perturbation
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The global nitrogen cycle is very dynamic, with many source and
Sink terms, leading to a relatively short residence time in the

land and ocean systems.
Gruber and Galloway, 2008
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The global nitrogen cycle and its human perturbation
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Anthropogenic perturbation of the global N-cycle
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Industrial N,-fixation and fossil fuel burning has more than doubled

the input of reactive nitrogen into land ecosystems.
Gruber and Galloway, 2008
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The global nitrogen cycle and its human perturbation
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Connecting the wheels
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The cycling of reactive nitrogen and that of carbon are tightly

GLOBAL N-CYCLE

connected. Changes in one invariably lead to changes in the other.
Gruber and Galloway, 2008
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Projected behavior of the global carbon sinks
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Projected behavior of the global carbon sinks
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Carbon-nitrogen-climate interactions
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Land-use change.
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LAND SINK

Results from a coupled carbon-nitrogen-climate model
NCAR CCSM with interactive N-cycle
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biosphere to

temperature

%0 2 with N
»l—;"‘\ - i— ’ — — ;o
'50.'7;_A ———— — o‘:
-100F 8
[ without N g
-150 b
[ =

=200 [ .

Year

1980 2000 2020 2040 2060 2080 2100

Gain, i.e. overall climate
“sensitivity” of land

-0.1

biosphere
03} 0]
without N ;
@ 0.2 e -9
o = a
E g
c ]
a E
: 001 o
R
(0] .
0.0

.....

1980 2000 2020 2040 2060 2080 2100

Year

Low temperature sensitivity — Low climate sensitivity

Adapted from Thornton et al. (submitted)



13

LAND SINK

Carbon-nitrogen-climate interactions: Mechanism

Land-use change.
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Enhanced remineralization of soil-nitrogen led to enhanced growth
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Carbon-nitrogen-climate interactions

Land carbon storage sensitivity
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The consideration of nitrogen-carbon interactions appears to
fundamentally alter the response of the land biosphere to CO, and
temperature changes!
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Fe FERTILIZATION

Nitrogen - carbon coupling in the ocean
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Fe FERTILIZATION

Iron fertilization: How does it work?
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Changes in the oxygen distribution

Zonal mean section of oxygen (mmol m3)
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Fe FERTILIZATION

N,O offsetting effect of Fe-fertilization in the tropics
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Rapid decrease of CO, uptake while N,O production and emission stay high
lead to large reduction in benefit

Jin and Gruber (2003)
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Fe FERTILIZATION

Offsetting effect of enhanced N,O emissions

Time & Scale of Tropical Southern Ocean
Fertilization Ocean
% offset % offset
100 yr large-scale 40 (£28) 13 (x6)
10 yr large-scale 58 (x67) 11 (x18)
10 yr patch-scale 115 (x34) -7 (x40)

Very substantial offsetting effect. In extreme cases, iron fertilization
might actually increase global warming

Jin and Gruber (2003)
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Summary and Conclusions

Consideration of carbon-nitrogen-climate feedbacks is
fundamental if we want to reliably predict the future response
of the Earth system to global climate change.

Consideration of such feedbacks in the /and biosphere may
fundamentally alter the magnitude and sign of carbon-climate
feedbacks.

Such feedbacks also need to be considered in the ocean,
particularly in the context of some proposed geo-engineering
solutions.

SUMMARY



