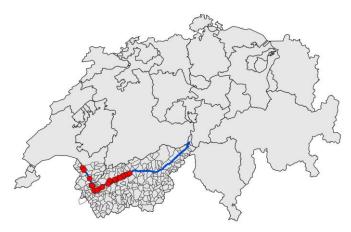


Creap Research center on alpine environment

Development of a Forecasting Tool for Groundwater Levels in Valais Using Advanced Computational Techniques


Corinna Frank, Romane Collin

Design Project in cooperation with CREALP, Research Center on Alpine Environment

duration of project: March-July 2021

 Environmental Sciences and Engineering

Groundwater Prediction could be an integral part of Risk Management in Valais

Prevention & sustainability

- Need for detection of early-stage changes in groundwater table as part of the risk management
- Current monitoring network of 320 stations
- Integrate forecasting of groundwater levels to anticipate events

Groundwater is the main water stock in Switzerland.

The canton of Valais is facing reccuring...

- flooding (e.g. of agricultural fields)
- threats by rising water table on polluted sites

Two objectives are to be adressed

Goal 1

Improve the understanding of how groundwater levels are behaving in Valais

Goal 2 Develop a groundwater level forecasting model 3

2-step Strategy towards a forecasting tool

Exploratory Data Analysis (EDA)

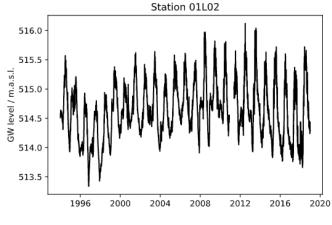
- Determine cross-correlations between groundwater levels and external variables like temperature and precipitation
- Auto-correlation
- Fourier Transform to find frequencies of the groundwater level signal

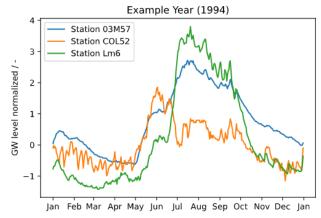
past

Clustering of different types of behaviors

Machine Learning Model (ML)

- EDA tells us which elements are important for the forecasting
- Forecasting model based on: Random Forest Regressor
- Evaluate the prediction quality
- Which information is most valuable for the prediction? Same as found in EDA?


EPFL Elements impacting the Groundwater Level in Valais


- Rhône discharge (pressure or mass exchange)
- Air temperature
- Rainwater
- Meltwater from snow & ice
- Topography
- Geology & soil
- Water withdrawal
- Land use, vegetation
- …

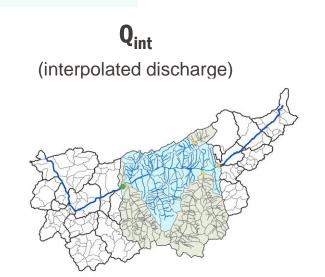
Yearly patterns according to hydrological regime and seasonality.

Behavior varies between stations.

 \rightarrow We will take a look at 25 years of data.

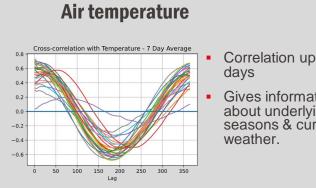
EPFL crealp

Data has been aggregated beforehand

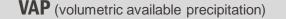

Spatialized data over the canton is aggregated to 1 value per station.

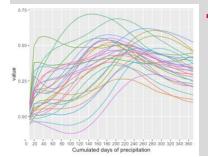
VAP

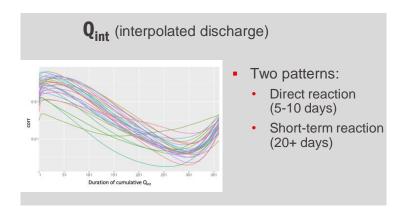
(volumetric available precipitation)



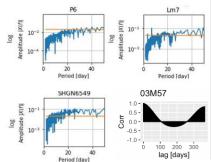
- m³/day
- Represents local available water from precipitation
- Physical elements:
 - rain
 - snowmelt delay
 - evapotranspiration


- m³/day
- Represents Rhône discharge at the height of the station
- Physical elements:
 - glaciers
 - snowmelt
 - precipitation

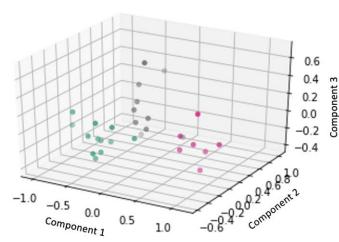

EPFL **External variables are impacting Groundwater** crealp **Levels on short & long scale**


DESIGN PROJECT – GORUNDWATER LEVEL PREDICTION

- Correlation up to 100
- Gives information about underlying seasons & current



- Three influences:
 - Last month (20 days): low water period
 - Last 6 months: stock and release of snow
 - Annual seasonality (270 days)


Past Groundwater Level

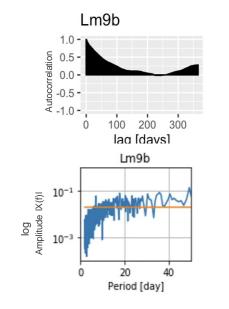
- 3 patterns from Fourier Transform: variability either noisy/smooth/ in between
- Autocorrelation of groundwater levels up to 100 days

Station behaviors can be clustered in 3 types

Type A	Type B	Type C
04S70	03M57	01L02
09M06	07E06	04I52
10E02	07G06	05X55
COL8	Lm5	08E6
Lm6	$\mathrm{Lm7}$	COL52
Lm9b	Lm8	COL53
$\operatorname{SHGN6543}$	RN14	Lm3
$\operatorname{SHGN6545}$		Lm4
$\operatorname{SHGN6546}$		P117
SHGN6549		P6
		P67
		S167

Type B

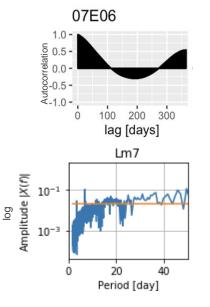
Type C


Type A

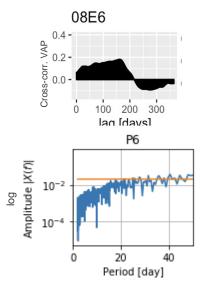
- Clustering using K-means algorithm: Unsupervised Machine Learning method which finds the number of groups autonomously
- Input: correlation values found in EDA
- ightarrow 3 clusters were identified
- \rightarrow What do they correspond to?

Analysis of the Station Types

Type A


- Short-term variations are important
- Linked to precipitation events

DESIGN PROJECT – GORUNDWATER LEVEL PREDICTION


Type B

- Cyclic annual patterns are the most important
- Important link to Rhône's discharge

Type C

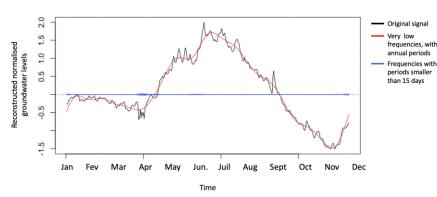
- Cyclic annual patterns are important
- Specificities of the last months as well
- High inter-type variability

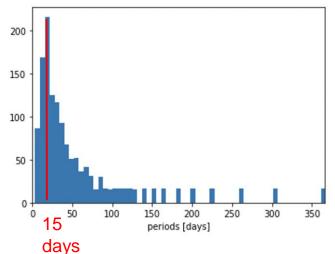
Station Types differ mainly by hydrological regime EPFL crealp 1.5 -1.0 Normalized mean groundwater level type B — c 0.0 -Watershed Hydrological regimes Catchment Categories of flow regime Sub-catchment Glacial Nival Hydrographic Networ Transitional nival Rhône Nivo-glacial Hydrometric Network Nivo-pluvial Groundwater stations Pluvial A Type A Pluvial B 10 20 km Type B -1.0 -Pluvio-nival Type C Jan Feb Mar Apr May Jun Sep Oct Nov Dec Jan dates

Goal 1

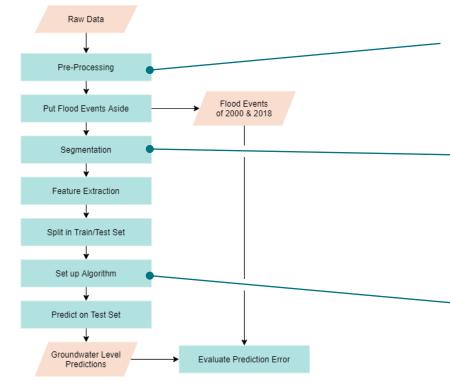
We identified some factors and links influencing groundwater in Valais.

Romane Collin & Corinna Frank

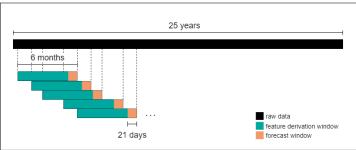

Groundwater Levels should be predicted every 7 days


Nyquist theorem

A signal may be uniquely and precisely reconstructed with a sampling rate that is equal to, or greater than, twice the highest significant frequency in the signal.

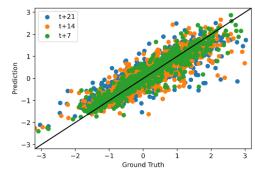

Fourier Transform analysis

- Forecast resolution should be of 7 days for reconstructing the groundwater level variations (Nyquist theorem).
- 2. Samples of past groundwater levels should be taken more often than every 7 days.

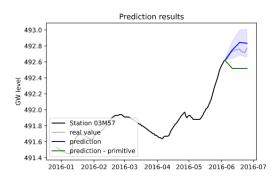


EPFL Building a Machine Learning model to predict Groundwater Levels

normalization since stations are on different elevation

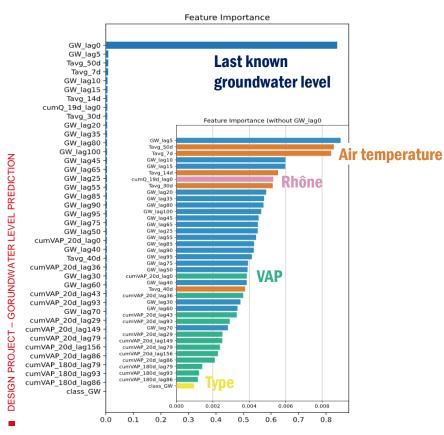



Random Forest Regressor


- + allows certain insight
- + robust (ensemble learning)
- + allows use of different feature types

Romane Collin & Corinna Frank

A simple model yields promising results for the forecasting task

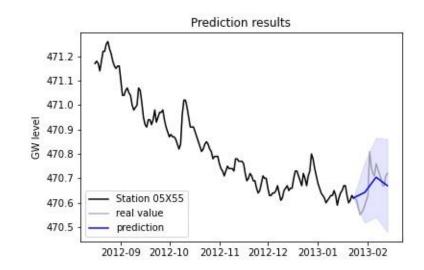

		Overall	Туре А	Туре В	Туре С
R ² score		0.80	0.70	0.84	0.82
	RMSE	Maximum error	RMSE	RMSE	RMSE
t+7 days	0.11 m	0.68 m	0.10 m	0.10 m	0.11 m
t+14 days	0.16 m	1.29 m	0.16 m	0.15 m	0.16 m
t+21 days	0.18 m	0.91 m	0.17 m	0.15 m	0.19 m

- Large variance in the performance between stations (R² from -2.86 to 0.94)
- Less precise on station type A
- Better than primitive model (R²: 0.72)

RMSE: Root Mean Squared Error; R² score: coefficient of determination

Romane Collin & Corinna Frank

EPFL Various possibilities to improve the forecasting in the future



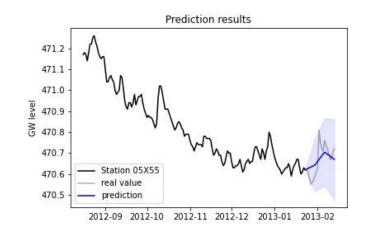
Our propositions

- 1. Apply a **high-pass filter** to remove the annual pattern.
- 2. Apply a **low-pass filter** to focus on trend rather than uncapturable short-term variations.
- 3. Use **forecasting features** (meteoSwiss, Crealp) since groundwater levels showed dependancy on recent conditions.
- 4. Build one **specialized model per type** of station.

A first forecasting model is established

Goal 2

Our model can serve as a first forecasting tool of groundwater levels in Valais, allowing further improvement in the future.


Further work focuses on operational implementation

Planned modifications

- identification of reference stations in susceptible areas
- stations in proximity with similar behavior are used to aid the model

Online platform for Groundwater Forecast in Valais is under development

16