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 3. Theoretical concepts
● Global mean precipitation constrained by energy availability at surface 
 (Allen & Ingram, 2002).

● Gregory et al., 2004 developed a method to separate the net flux imbalance
 of the climate system (N) into a radiative forcing term (F) and climate
 feedback term (-αΔTs):

                                     N = F – αΔTs         (eq. 1)

● Forster & Taylor (2006) extended the methodology for transient simulations.
● Andrews (2009) (A09 hereafter) applied the methodology to the surface
 energy budget components (NET, LW, SW, LH, SH) and to precipitation (P).

 4. Results
a) Surface energy fluxes                                     b) Precipitation
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 1. Motivation
• Changes in the hydrological cycle caused by global warming are 
 expected to have severe consequences for societies, agriculture 
 and ecosystems (Meehl et al., 2007).

• Response of precipitation to the all-forcing scenarios from different 
 models is ambiguous, hence a large uncertainty in the projections. 

One forcing at a time to understand physical mechanisms 
leading to the intensification of the hydrological cycle. 

Test additive linearity assumption of the forcing's response.

 2. Simulations
• NCAR CCSM3.5, transient simulations with fully coupled ocean
• Resolution: 1.9°x2.5° (finite volume dynamical core)

• 2x: 1%/yr to 2xCO2

• 4x: 2%/yr to 4xCO2

• 37: 3.7 W/m2 increase in solar forcing
• 74: 7.4 W/m2 increase in solar forcing
• 372x: 1%/yr to 2xCO2  + 3.7 W/m2 increase in solar forcing

• 5 runs x 100 yrs for each simulation to quantify internal variability. 

Table 1: Components of the global mean surface feedback parameter diagnosed from each simulation.
Results published in A09 are also shown. Units: W/m2, uncertainty range is standard deviations of 5 runs.

Fig. 2: Summary of the imbalance, forcing and feedback terms from eq. 1 for all five simulations. Values 
are averaged over the 5 runs and the years 81-100 of the simulation. Results are given for the net 
surface energy, longwave, shortwave, latent heat and sensible heat fluxes.

Fig. 1: Regression 
of change in global 
mean net surface 
energy flux against 
change in global 
mean surface air 
temperature after 
the 70th year of the 
simulation.

Fig. 3: Time series of net change in precipitation and its separation into forcing and feedback 
response averaged over the 5 runs of each simulation.
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5. Summary and outlook
● Changes in surface energy budget components and precipitation      

are calculated for different idealized simulations.
● Feedback parameters are well constrained for NET, LW, LH and P   

but uncertain for SW and SH.
● Results are model dependent (see comparison with A09) because 

feedback parameter reflects the climate sensitivity of the model.

● Test assumption of linear additivity of response to a given forcing:
- Imbalance: seem to add linearly but not for LH and P
- Forcing: not lin. add. for CO2, less clear for solar simulations
- Feedback: the same since α acts to counterbalance forcing

● For precipitation, forcing term <0 in simulations with CO2 (2x, 4x,      

372x) while it is =0 for the solar-only simulations (37, 74).

Perform same analysis for TOA fluxes (Forster & Taylor, 2006).
Test if assumption that feedback parameter α is not forcing 
dependent is justified.
Investigate linear additivity of spatial patterns of precipitation, 
evaporation and cloud cover.

mailto:nathalie.schaller@env.ethz.ch

	Slide 1

