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1. Motivation 2. Simulations

* Changes in the hydrological cycle caused by global warming are * NCAR CCSMa3.5, transient simulations with fully coupled ocean
expected to have severe consequences for societies, agriculture * Resolution: 1.9°x2.5" (finite volume dynamical core)
and ecosystems (Meehl et al., 2007).
: 1%l/yr to 2xCO,
* Response of precipitation to the all-forcing scenarios from different : 2%lyr to 4xCO,

models is ambiguous, hence a large uncertainty in the projections. . 3.7 Wim? increase in solar forcing

=) One forcing at a time to understand physical mechanisms * 74: 7.4 W/m® increase in solar forcing
leading to the intensification of the hydrological cycle. « 372x: 1%lyr to 2xCO,, + 3.7 W/m? increase in solar forcing
= Test additive linearity assumption of the forcing's response. » 5 runs x 100 yrs for each simulation to quantify internal variability.
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* Global mean precipitation constrained by energy availability at surface
(Allen & Ingram, 2002).
* Gregory et al., 2004 developed a method to separate the net flux imbalance

of the climate system (N) into a radiative forcing term (F) and climate
feedback term (-aAT):
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Fig. 1: Regression
of change in global
mean net surface
energy flux against
change in global
mean surface air
temperature after

N = F — aATS (eq. 1)
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* Forster & Taylor (2006) extended the methodology for transient simulations.
* Andrews (2009) (A09 hereafter) applied the methodology to the surface

Or the 70" year of the
energy budget components (NET, LW, SW, LH, SH) and to precipitation (P). oo e e gy Smulation
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| A 4. Results
. a) Surface energy fluxes b) Precipitation
E Table 1: Components of the global mean surface feedback parameter diagnosed from each simulation. = (025-—deltaP N
| Results published in A09 are also shown. Units: W/m?, uncertainty range is standard deviations of 5 runs. © '
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— Fig. 3: Time series of net change in precipitation and its separation into forcing and feedback
Q Ol H m l_ T — ._ ) il response averaged over the 5 runs of each simulation.
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5. Summary and outlook
» N 6_ _|
. £ = . L
2 4f l * Changes in surface energy budget components and precipitation
22r I ml i are calculated for different idealized simulations.
O .
500 R - - - » Feedback parameters are well constrained for NET, LW, LH and P
but uncertain for SW and SH.
* Results are model dependent (see comparison with A09) because
Y Of il feedback parameter reflects the climate sensitivity of the model.
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g gl | * Test assumption of linear additivity of response to a given forcing:
s - Imbalance: seem to add linearly but not for LH and P
LL | | | | | . ] . . .
NET i, SW | H SH - Forcing: not lin. add. fc.>r CO,, less clear for solar S|mulatIons
Fig. 2: Summary of the imbalance, forcing and feedback terms from eq. 1 for all five simulations. Values - Feedback: the same since a acts to counterbalance forcmg
are averaged over the 5 runs and the years 81-100 of the simulation. Results are given for the net
surface energy, longwave, shortwave, latent heat and sensible heat fluxes. o _ _ _ _ _ _
« For precipitation, forcing term <0 in simulations with CO,, (2x, 4x,
372x) while it is =0 for the solar-only simulations . 74).
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