

Regional Crop Modeling: How Future Climate May Impact Crop Yields in Switzerland

Niklaus Lehmann, Robert Finger

Background

- Agricultural yields and income are highly dependent on weather and climate conditions.
- Within the last years, climatic extreme events have led to agricultural yield losses throughout Switzerland [1].
- Climate change will influence potential and realized yields in Swiss crop production [2].

Research Questions

- Q1) Which influence have weather— and soil-conditions as well as crop management on cereal, potato and sugar-beet yields in Switzerland?
- **Q2)** How will climate change affect the yield levels and yield variability of these crops?

Q1 - Influence of Weather, Soil and Management

Method:

- Multiple regression model: Yield = f(Weather, Soil, Management)
- Data: Farm Accountancy Data Network (FADN) Bookkeeping data from more than 3000 Swiss farms, daily MeteoSwiss data, soil aptitude map of Switzerland
- Calculation of average values of yield-, weather— and management-values for 12 study regions (Fig 1) for the period 1990-2008.
- Weather variables, e.g.: growing degree days, moisture indexes, precipitation sums
- Management variables, e.g.: direct payments, fertilizer costs

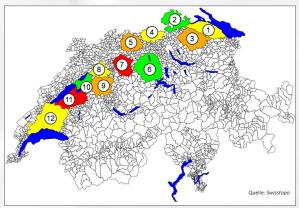


Figure 1: 12 Study Regi-

Results:

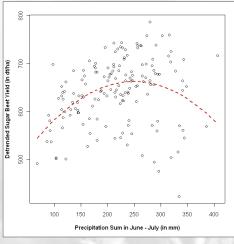


Figure 2: Relationship between regional potato yields and the precipitation sum for the period April -August

- Weather, soil and management explain between 65% and 85% of the observed variability in regional crop yields
- Management has a rather small influence, while climate and soil are most important determinants influencing regional crop yields
- Climate often has an U-shaped influence (e.g. Fig.2) on crop yields

- Fuhrer, J.; Beniston, M.; Fischlin, A.; Frei, C.; Goyette, S.; Jasper, K. & Pfister, C.; Climate Risks and Their Impact on Agriculture and Forests in Switzerland; Climatic Change, November 2006, 79, 79-102(24)
- [2] Calanca, P.; Fuhrer, J.; Jasper, K.; Torriari, D. & Keller, F., Klimawandel und landwirtschaftliche Produktion, Agrarfor schung, 2005, 12(09), 392-397

Q2 - Impact of climate change on crop yields

Method:

- Generation of daily weather for current and future (A1B) climate data using the LARS weather generator for the 12 regions
- Regional estimation of future cereal, potato and sugar beet yields using the estimated regression models (Q1) and simulated weather data

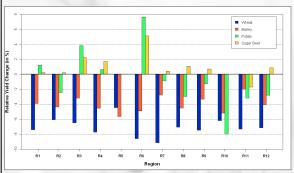


Figure 3: Relative changes in crop yields for the 12 regions (Fig. 1) evaluated for the time horizon 2046-2065, compared with current yields.

Results

- Negative impacts of climate change on wheat and barley, ambiguous but rather positive impacts on potato and sugar beet yields
- Impacts differ between regions and crops

Region	Wheat	Barley	Potato	Sugar Beet
1	+ 11%	+ 5%	- 16%	+ 3%
2	+ 19%	+ 2%	- 4%	+ 7%
3	+ 0%	+ 3%	- 37%	- 32%
4	+ 22%	+ 5%	- 21%	- 7%
5	+ 34%	+ 7%	NA	NA
6	+ 0%	+ 4%	- 56%	- 54%
7	- 5%	+ 1%	- 17%	- 8%
8	+ 26%	+ 6%	- 18%	- 5%
9	+ 13%	+ 4%	- 22%	- 4%
10	+ 28%	+ 7%	- 3%	+ 10%
11	+ 5%	+ 2%	+ 1%	+ 14%
12	+ 21%	+ 2%	- 28%	- 13%

Table 1: Relative changes in yield variability evaluated for the time horizon 2046-2065, compared with current yield variability.

 Impacts on yield variability is ambiguous, however, climate change tends to increase variability of wheat and barley, but decreases potato and sugar beet yield variability

Conclusions

- ► Impacts of climate change on crop yields in Switzerland differ between regions impacts are site- and crop specific
- ► In general, the here estimated impacts of climate change on Swiss crop production are of small magnitude, in line with the results of other studies
- ► The here applied regression approach over-estimates negative impacts of climate change because CO₂ fertilization and adaptation are not considered
- ► The results indicate that shifts of sowing and harvest dates as well as regional re-allocation of crop production might avoid negative impacts